The rapid growth of information technology and mobile service platforms, i.e., internet, google, and facebook, etc. has led the abundance of data. Due to this environment, the world is now facing a revolution in the process that data is searched, collected, stored, and shared. Abundance of data gives us several opportunities to knowledge discovery and data mining techniques. In recent years, data mining methods as a solution to discovery and extraction of available knowledge in database has been more popular in e-commerce service fields such as, in particular, movie recommendation. However, most of the classification approaches for predicting the movie popularity have used only several types of information of the movie such as actor, director, rating score, language and countries etc. In this study, we propose a classification-based support vector machine (SVM) model for predicting the movie popularity based on movie's genre data and social network data. Social network analysis (SNA) is used for improving the classification accuracy. This study builds the movies' network (one mode network) based on initial data which is a two mode network as user-to-movie network. For the proposed method we computed degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality as centrality measures in movie's network. Those four centrality values and movies' genre data were used to classify the movie popularity in this study. The logistic regression, neural network, $na{\ddot{i}}ve$ Bayes classifier, and decision tree as benchmarking models for movie popularity classification were also used for comparison with the performance of our proposed model. To assess the classifier's performance accuracy this study used MovieLens data as an open database. Our empirical results indicate that our proposed model with movie's genre and centrality data has by approximately 0% higher accuracy than other classification models with only movie's genre data. The implications of our results show that our proposed model can be used for improving movie popularity classification accuracy.
Collaborative filtering is one of the commonly used methods in the web recommendation system. Numerous researches on the collaborative filtering proposed the numbers of measures for enhancing the accuracy. This study suggests the movie recommendation system applied with Word2Vec and ensemble convolutional neural networks. First, user sentences and movie sentences are made from the user, movie, and rating information. Then, the user sentences and movie sentences are input into Word2Vec to figure out the user vector and movie vector. The user vector is input on the user convolutional model while the movie vector is input on the movie convolutional model. These user and movie convolutional models are connected to the fully-connected neural network model. Ultimately, the output layer of the fully-connected neural network model outputs the forecasts for user, movie, and rating. The test result showed that the system proposed in this study showed higher accuracy than the conventional cooperative filtering system and Word2Vec and deep neural network-based system suggested in the similar researches. The Word2Vec and deep neural network-based recommendation system is expected to help in enhancing the satisfaction while considering about the characteristics of users.
Ha, Hyoji;Han, Hyunwoo;Mun, Seongmin;Bae, Sungyun;Lee, Jihye;Lee, Kyungwon
한국컴퓨터정보학회논문지
/
제21권5호
/
pp.19-29
/
2016
This paper suggests a method to refine a massive collective intelligence data, and visualize with multilevel sentiment network, in order to understand information in an intuitive and semantic way. For this study, we first calculated a frequency of sentiment words from each movie review. Second, we designed a Heatmap visualization to effectively discover the main emotions on each online movie review. Third, we formed a Sentiment-Movie Network combining the MDS Map and Social Network in order to fix the movie network topology, while creating a network graph to enable the clustering of similar nodes. Finally, we evaluated our progress to verify if it is actually helpful to improve user cognition for multilevel analysis experience compared to the existing network system, thus concluded that our method provides improved user experience in terms of cognition, being appropriate as an alternative method for semantic understanding.
영화 네트워크도 다른 사회 네트워크와 마찬가지로 멱함수 분포 특성을 지닌 척도 없는 네트워크로 알려져 있다. 본 연구는 2000년부터 2009년까지 10년간 상영된 한국영화 799편에 등장하는 배우 및 감독의 네트워크를 구축하고 특성을 분석하였다. 영화감독 네트워크를 구축하고, 이 네트워크로 부터 3편 이상을 연출하고 70%이상의 백만 관객을 동원한 감독 중에서 영화 편당 관객 수가 높은 상위 10명의 감독을 추출하였다. 한국영화 799편을 관객 동원력에 따라 3등급으로 구분하고 각 등급에 일정 편수 이상 출연한 배우들을 중심으로 네트워크를 구축하였다. 그리고 70% 이상의 백만 관객 동원율을 가진 편당 관객 동원수가 높은 상위 20명의 배우를 추출하였다. 배우 및 감독 30명이 출연하거나 연출한 영화를 중심으로 2000년대 한국 영화의 중심을 이루고 있는 핵심 영화 네트워크를 구축하여 장르별 상위 관중 동원력을 가진 영화배우와 영화감독을 도출하였다. 이 핵심 네트워크로부터 향후 관중 동원력이 높은 영화를 제작할 수 있는 감독, 배우, 장르의 조합을 2010년의 실제 상황과 비교분석하였다. 본 연구 결과는 궁극적으로 네트워크를 바탕으로 한국 영화 관객 동원력을 예측할 수 있는 방법을 제시하고자 한다.
Reaction of people is importantly considered about specific case as a social network service grows. In the previous research on analysis of social network service, they predicted tendency of interesting topic by giving scores to sentences written by user. Based on previous study we proceeded research of sentiment analysis for social network service's sentences, which predict the result as positive or negative for movie reviews. In this study, we used movie review to get high accuracy. We classify the movie review into positive or negative based on the score for learning. Also, we performed embedding and morpheme analysis on movie review. We could predict learning result as positive or negative with a number 0 and 1 by applying the model based on learning result to social network service. Experimental result show accuracy of about 80% in predicting sentence as positive or negative.
본 연구에서는 <네이버 영화> 페이지의 리뷰 데이터를 수집하여, 출현 빈도가 높은 단어를 중심으로 영화 관람객의 반응을 시각화하는 작업을 수행하였다. 이를 위해 총 6편의 영화를 선정하여 데이터 수집 및 정제과정을 거쳤으며, 의미연결망 분석(Semantic network analysis)을 활용하여 단어 간 관계성을 파악하고자 하였다. 데이터 시각화 작업에는 UCINET과 함께 패키지화된 NetDraw가 사용되었다. 본 연구의 시사점은 문장으로 작성된 영화 관람객의 리뷰를 키워드 중심으로 시각화하여, 소비자들의 반응을 한 눈에 확인하는 리뷰 인터페이스 구현이 가능한지 탐색하였다는 점이다.
영화 장르에 대한 기존 연구는 특정 장르와 영화 성과간의 유의성 검증에 집중하였다. 그러나 기존 연구는 대상 국가 및 시기에 따라 서로 다른 결과를 보여주고 있어 이론적, 실무적 시사점을 얻는 데 어려움이 있으며 주로 단일 장르와 성과 간의 관계에 집중했기 때문에, 최근 중요하게 부각되고 있는 복합 장르 문제를 이해하는 데 한계를 가지고 있다. 본 연구에서는 사회연결망 분석 방법과 복합 장르 자료를 활용하여 장르 간 네트워크를 구성하고 장르 중심성과 영화 성과와의 관계를 분석하였다. 연구 결과 장르 중심성과 영화 성과 간에는 역 U 형태의 관계가 있는 것으로 확인되었다. 이는 지나친 '탐색'과 지나친 '활용'보다는 이 둘 간의 직절한 균형이 필요하다는 이론적 주장을 지지하는 결과이다. 본 연구는 실무적 차원에서 영화 장르의 범위와 조합을 선택하는 데에도 유용하게 활용할 수 있을 것이다. 향후 연구에서 연구 대상을 확대하고 장르 간 연결에 대한 질적 분석을 수행한다면 연구의 신뢰성을 높일 수 있을 것으로 기대하며 영화산업의 성장과정과 연계한 장르 네트워크의 동적 연구로도 확장 가능할 것이다.
복잡계 과학의 발달에 따라 많은 사회 네트워크들이 분석되어 지고 있다. 우리는 사회 네트워크의 하나로 한국영화 100선을 중심으로 한국 영화배우 네트워크를 구축하고 분석하였다. 현재까지 연결선수, 중간성(betweenness), 결집계수 등 링크수를 중심으로 네트워크의 구조를 분석하는 방향으로 진행되어지고 있다. 하지만 이제는 네트워크의 구조적 분석에서 멈추는 것이 아니라, 나아가 k-core 분석법 등을 이용하여 복잡한 네트워크 속에서 핵심 되는 중심 모듈을 찾아 분석하는 정보 분석 방향으로 진행되어야 할 것이다. 본 논문은 한국 영화 데이터베이스에서 제공하는 한국영화 100선에 출연하는 영화배우 네트워크를 만들어 가중치 유무에 따른 핵심 모듈 분석과 네트워크가 시기별로 확장되어 가는 양상을 분석하였다. 이는 네트워크의 확장 또는 진화를 이해하는 모델을 위한 기초 자료로 활용될 것으로 기대한다.
We have developed a prototype super-high-definition (SHD) digital cinema distribution system that can store, transmit, and display eight-million-pixel motion pictures that have the image quality of a 35-mm film movie. The system contains a movie server, a real-time decoder, and an SHB projector. Using a Gigabit Ethernet link and TCP/IP, the server transmits JPEG2000 compressed motion picture data streams to the decoder at transmission speeds as high as 300 Mbps. The received data streams are decompressed by the decoder, and then projected onto a screen via the projector. By using an enlarged TCP window, multiple TCP streams, and a shaping function to control the data transmission quantity, we achieved real-time streaming of SHD movie data at about 300 Mbps between Chicago and Los Angeles, a distance of more than 3000 km. We also improved the decoder performance to show movies with Image qualities of 450 Mbps or higher. Since UDP is more suitable than TCP for fast long-distance streaming, we have developed an SHD digital cinema UDP relay system, in which UDP is used for transmission over a fast long-distance network. By using four pairs of server-side-proxy and decoder-side-proxy, 450-Mbps movie data streams could be transmitted.
본 연구는 <네이버 영화> 페이지의 리뷰 데이터를 수집하여, 출현 빈도가 높은 단어를 중심으로 영화 관람객의 반응을 시각화하는 작업을 수행하였다. 이를 위해 총 6편의 영화를 선정하여 데이터 수집 및 정제과정을 거쳤으며, 의미연결망 분석(Semantic network analysis)을 활용하여 단어 간 관계성을 파악하고자 하였다. 데이터 시각화 작업에는 UCINET과 함께 패키지화된 NetDraw가 사용되었다. 본 연구의 시사점은 문장으로 작성된 영화 관람객의 리뷰를 키워드 중심으로 시각화하여, 소비자들의 반응을 한 눈에 확인하는 리뷰 인터페이스 구현이 가능한지 탐색하였다는 점이다. 본 연구를 통해 영화 리뷰를 구성하는 키워드를 시각화하고, 리뷰 내용에서 영화별 특성의 차이를 확인하였다는 점에서 본 연구가 의미를 가진다고 하겠다. 후속 연구는 보다 많은 영화의 리뷰를 활용할 필요성이 제기되며, 각 영화별 리뷰의 수도 비슷한 양으로 맞추어 연구에 활용해야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.