• Title/Summary/Keyword: Movement Path

Search Result 547, Processing Time 0.033 seconds

A Location Tracking Strategy with Spatial Locality in Personal Communication Networks (개인휴대 통신망에서 공간적 국부성을 이용한 위치추적 방법)

  • Lee, Jong-Min;Kwon, Bo-Seob;Maeng, Seung-Ryoul
    • The KIPS Transactions:PartC
    • /
    • v.10C no.2
    • /
    • pp.191-198
    • /
    • 2003
  • Location tracking is used to keep track of the location information of a mobile terminal in an idle state for a call setup between mobile terminals. In this paper, we introduce a new location tracking strategy that utilizes spatial locality to have better performance than a movement based location tracking strategy. We reduce a lot of unnecessary location updates by updating the location information of a mobile terminal using the virtual movement path, which is generated after removing spatial localities in the actual movement path. Simulation results show that the proposed strategy greatly reduces the overall location tracking cost.

MEASUREMENT THE PATHS OF FARM MACHINERY USING AN OPTICAL WAVE RANGE FINDER

  • Shigeta, Kazuto;Chosa, Tadashi;Nagsaka, Yoshisada;Sato, Junichi
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.591-597
    • /
    • 1996
  • To straighten the path that farm machinery follows in paddy fields, it is necessary to measure and evaluate the tracks that these machines leave behind. However, there are no known methods for making such measurements and evaluations since it is difficult to accurately trace the paths that the machine make in paddy fields. Therefore, a measuring system has been developed which can accurately recored the path of a farm machinery in a field by measuring the horizontal straight-line distance from the side of the field to the machine. This system consists of a track subsystem on the machine and a range finder system. A measuring appraratus is installed on a flatcar which runs on rails over 50 m long at the side of the filed. The track subsystem uses a CCD camera to track the movement of the machine in the field which is following a lengthwise path. The range finder subsystem measures the distance that the measuring apparatus has traveled on the rails and the distance from the app ratus to the machine in the field. This system makes it possible to record the path that the machine travels. Even though differences in traveling distance arise between the measuring apparatus and the farm machine, these differences are detected by image processing , which allows the machine in the field to be located accurately. The short(0.05 second) time required for image processing is enough to follow an object . In the present study, this system was able to measure the path that a moving tractor makes. Even though a lag of up to 0.4 meters occurred, this system did not miss its target during operation of the track subsystem. Thus the path measuring system developed here is able to record vehicle paths automatically by following the movement of vehicles in the field and measuring the distance to them. It is expected to come into use in such applications as unmanned moving vehicle tests.

  • PDF

Robot soccer strategy and control using Cellular Neural Network (셀룰라 신경회로망을 이용한 로봇축구 전략 및 제어)

  • Shin, Yoon-Chul;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.253-253
    • /
    • 2000
  • Each robot plays a role of its own behavior in dynamic robot-soccer environment. One of the most necessary conditions to win a game is control of robot movement. In this paper we suggest a win strategy using Cellular Neural Network to set optimal path and cooperative behavior, which divides a soccer ground into grid-cell based ground and has robots move a next grid-cell along the optimal path to approach the moving target.

  • PDF

A COMPUTER ANALYSIS ON THE CONDYLAR PATH OF BALANCING SIDE IN MANDIBULAR LATERAL MOVEMENT (하악 측방운동시 평형측 과두의 운동 궤적에 관한 컴퓨터 분석)

  • Lee Dong-Hyun;Choi Dae-Gyun;Park Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.549-564
    • /
    • 1993
  • The purpose of this study was to research the condylar path and the anterior angle of glenoid fossae and classify the patterns of condylar path. Thirty male and female dental students with normal occlesion and masticatory system ranging in age from 21 to 30, without present symptoms and an)r history of TM joint disturbance, were selected for this study. Transcranial radiographs of TM joints under mandibular lateral movement were obtained. By the computer analysis on the radiographs, the angle of posterior slope of articular eminance, the sagittal condylar guidance angie, condylar movement patterns and the height of glenoid fossa was measured respectively, and studied their interrelationship comparatively. The results obtained were as follows : 1. The total distance of condylar movement on balancing side during mandibular lateral movement was 4.55mm for Lt. and 4.78mm for Rt. when mandible moved from C.R. to canine to canine relation and 7.86mm for the Lt. and 8.10mm for the Rt. when mandible moved from C.R. to 7.5mm. 2. The horizontal distance of condylar movement on balancing side during mandibular lateral movements was 3.16mm for the Lt. and 3.52mm for the Rt. when mandible moved from C.R. to canine to canine relation and 6.10mm for the Lt. and 6.30mm for the Rt. when mandible moved from C.R. to 7.5mm. 3. The sagittal condylar guidance angle on balancing side during mandibular lateral movements was $45.96^{\circ}$ for the Lt. and $43.22^{\circ}$ for the Rt. when mandible moved from C.R. from canine to canine relation and $41.14^{\circ}$ for the Lt. and $39.77^{\circ}$ for the Rt. when mandible moved from C.R. to 7.5mm. 4. The height of glenoid fossa was 8.23mm for the Lt. and 7.80mm for the Rt. and the angle of posterior slope of articular eminence was $38.30^{\circ}$ for the Lt. and $38.79^{\circ}$ for the Rt. by method-A and $55.61^{\circ}$ for the Lt. and $55.64^{\circ}$ for the Rt. by method-B. 5. The sequence of the frequency of condylar movement patterns on balancing side during mandibular lateral movement were concave type(30 cases), convex type(16 cases), reverse S shape curve(9 cases) and S shape curve(5 cases) when mandible moved from C.R. to canine to canine relation and concave type(27 cases), 5 shape curve(13 cases), convex type(11 cases) and reverse S shape curve(9 cases) when mandible moved from C.R. to 7.5mm.

  • PDF

Improved Heterogeneous-Ants-Based Path Planner using RRT* (RRT*를 활용하여 향상된 이종의 개미군집 기반 경로 계획 알고리즘)

  • Lee, Joonwoo
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.285-292
    • /
    • 2019
  • Path planning is an important problem to solve in robotics and there has been many related studies so far. In the previous research, we proposed the Heterogeneous-Ants-Based Path Planner (HAB-PP) for the global path planning of mobile robots. The conventional path planners using grid map had discrete state transitions that constrain the only movement of an agent to multiples of 45 degrees. The HAB-PP provided the smoother path using the heterogeneous ants unlike the conventional path planners based on Ant Colony Optimization (ACO) algorithm. The planner, however, has the problem that the optimization of the path once found is fast but it takes a lot of time to find the first path to the goal point. Also, the HAB-PP often falls into a local optimum solution. To solve these problems, this paper proposes an improved ant-inspired path planner using the Rapidly-exploring Random Tree-star ($RRT^*$). The key ideas are to use $RRT^*$ as the characteristic of another heterogeneous ant and to share the information for the found path through the pheromone field. The comparative simulations with several scenarios verify the performance of the improved HAB-PP.

A real-time path planning method for efficient movement of a mobile robot (자율이동로봇의 효과적인 이동을 위한 실시간 경로생성 방법)

  • Sa, In-Kyu;Ahn, Ho-Seok;Lee, Hyung-Kyu;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.331-332
    • /
    • 2008
  • A real-time path planning of mobile robots is a broad topic, covering a large spectrum of different technologies and applications. Briefly a path planning is designated moving technique from current pose to desired pose. It is remarkably easy to handle for human, not for robot. It is difficult that a robot recognizes surround to get a current pose and to avoid an obstacles. In this paper covers kinematics, path planning for efficient movements of a mobile robot. Kinematics of mobile robot which is suggested in this paper is exploited to create reliable and suitable motions. In addition, Gradient method is a algorithm which can guarantee for real-time path planning.

  • PDF

Manipulator Path Design to Reduce the Endpoint Residual Vibration under Torque Constraints (토크 제한하에서의 첨단부 잔류진동 감소를 위한 매니퓰레이터 경로설계)

  • 박경조;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2437-2445
    • /
    • 1993
  • In this work, a new method is presented for generating the manipulator path which significantly reduces residual vibration under the torque constraints. The desired path is optimally designed so that the required movement can be achieved with minimum residual vibration. From the previous research works, the dynamic model had been established including both the link and the joint flexibilities. The performance index is selected to minimize the maximum amplitude of residual vibration. The path to be designed is developed by a combined Fourier series and polynomial function to satisfy both the convergence and boundary condition matching problems. The concept of correlation coefficients is used to select the minimum number of design variables, i.e. Fourier coefficients, the only ones which have a considerable effect on the reduction of residual vibration. A two-link Manipulator is used to evaluate this method. Results show that residual vibration can be drastically reduced by selecting an appropriate manipulator path to both of unlimited and torque-limited cases.

A Study on Excavation Path Design of Excavator Considering Motion Limits (실차의 거동한계를 고려한 굴착기의 굴착 경로설계 연구)

  • Shin, Dae Young
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.20-31
    • /
    • 2021
  • An excavator is a construction machine that can perform various tasks such as trenching, piping, excavating, slope cutting, grading, and rock demolishing. In the 2010s, unmanned construction equipment using ICT technology was continuously developed. In this paper, the path design process was studied to implement the output data of the decision stage, and the path design algorithm was developed. For example, the output data of the decision stage were terrain data around the excavator, excavator mechanism information, excavator hydraulic information, the position and posture of the bucket at key points, the speed of the desired bucket path, and the required excavation volume. The result of the path design was the movement of the hydraulic cylinder, boom arm, bucket, and bucket edge. The core functions of the path design algorithm are the function of avoiding impact during the excavation process, the function to calculate the excavation depth that satisfies the required excavation volume, and the function that allows the bucket to pass through the main points of the excavation process while maintaining the speed of the desired path. In particular, in the process of developing the last function, the node tracking method expressed in the path design table was newly developed. The path design algorithm was verified as this path design satisfied the JCMAS H02 requirement.

Conical Path Generation Technique for Ball Bar Measurement Using Simultaneous 5-Axis Motion Control (5 축 동시 구동을 통한 볼바 측정용 원추형 경로 생성 방법)

  • Lee, Dong-Mok;Lee, Jae-Chang;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • This study proposes a path generation technique for simultaneous five-axis driving for ball bar measurement, which is equivalent to cone frustum machining as mentioned in the NAS979 standard. The technique is generalized for a 3D circular path, and it is applicable to all machine tools regardless of their structural configurations. A mathematical machine input model that consists of a five-axis machine tool, ball-bar measurement and conical path information as inputs is presented for easy NC code generation, simulation for various test conditions, and a measurement test. The movement range of rotary axes, which depends on various conditions, is mathematically analyzed based on the proposed conical path model. Moreover, the effect of the movement range on various conditions (apex angle and inclination angle, ball bar tilting acceptance angle, offset position of workpiece ball, etc.) is analyzed.