• Title/Summary/Keyword: Mouse strains

Search Result 200, Processing Time 0.042 seconds

Selection and Characterization of Bacteriocin-Producing Lactobacillus sp. AP 116 from the Intestine of Pig for Potential Probiotics

  • Shin, Myeong-Su;Choi, Hyun-Jong;Jeong, Kyeong-Hyeon;Lim, Jong-Cheol;Kim, Kyeong-Su;Lee, Wan-Kyu
    • 한국축산식품학회지
    • /
    • 제32권1호
    • /
    • pp.31-39
    • /
    • 2012
  • The purpose of this study was to isolate bacteriocin-producing bacteria with antagonistic activities against pathogens from the intestines of pigs for probiotic use. Lactobacillus sp. AP 116 possessing antimicrobial property was selected from a total of 500 isolates. The AP 116 strain showed a relatively broad spectrum of inhibitory activity against Listeria monocytogenes, Clostridium perfringens, Pediococcus dextrinicus, and Enterococcus strains using the spot-on-lawn method. Bacteriocin activity remained unchanged after 15 min of heat treatment at $121^{\circ}C$ and exposure to organic solvents; however, it diminished after treatment with proteolytic enzymes. Maximum production of bacteriocin occurred at $34^{\circ}C$ when a pH of 6.0 was maintained throughout the culture during fermentation. According to a tricine SDS-PAGE analysis, the molecular weight of the bacteriocin was approximately 5 kDa. The isolate tolerated bile salts and low pH, and also induced nitric oxide (NO) in mouse peritoneal macrophages. Bacteriocin and bacteriocin-producing bacteria, such as Lactobacillus sp. AP 116, could be potential candidates for use as probiotics as an alternative to antibiotics in the pig industry.

Evidence to Support the Therapeutic Potential of Bacteriophage Kpn5 in Burn Wound Infection Caused by Klebsiella pneumoniae in BALB/c Mice

  • Kumar, Seema;Harja, Kusum;Chhibber, Sanjay
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권5호
    • /
    • pp.935-941
    • /
    • 2010
  • The emergence of antibiotic-resistant bacterial strains is one of the most critical problems of modern medicine. Bacteriophages have been suggested as an alternative therapeutic agent for such bacterial infections. In the present study, we examined the therapeutic potential of phage Kpn5 in the treatment of Klebsiella pneumoniae B5055-induced burn wound infection in a mouse model. An experimental model of contact burn wound infection was established in mice employing K. pneumoniae B5055 to assess the efficacy of phage Kpn5 in vivo. Survival and stability of phage Kpn5 were evaluated in mice and the maximum phage count in various organs was obtained at 6 h and persisted until 36 h. The Kpn5 phage was found to be effective in the treatment of Klebsiella-induced burn wound infection in mice when phage was administered immediately after bacterial challange. Even when treatment was delayed up to 18 h post infection, when all animals were moribund, approximately 26.66% of the mice could be rescued by a single injection of this phage preparation. The ability of this phage to protect bacteremic mice was demonstrated to be due to the functional capabilities of the phage and not due to a nonspecific immune effect. The levels of pro-inflammatory cytokines (IL-$1{\beta}$ and TNF-${\alpha}$) and anti-inflammatory cytokines (IL-10) were significantly lower in sera and lungs of phage-treated mice than phage untreated control mice. The results of the present study bring out the potential of bacteriophage therapy as an alternate preventive approach to treat K. pneumoniae B5055-induced burn wound infections. This approach not only helps in the clearance of bacteria from the host but also protects against the ensuing inflammatory damage due to the exaggerated response seen in any infectious process.

An Outer Membrane Protein Preparation as a Vaccine against Pseudomonas aeruginosa Infection

  • Park, Wan-Je;Cho, Yang-Je;Ahn, Dong-Ho;Jung, Sang-Bo;Lee, Na-Gyong;Kim, Hyun-Su;Hahm, Kyung-Soo;Kim, Yu-Sam
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권2호
    • /
    • pp.144-150
    • /
    • 1997
  • We developed a simple and efficient method to prepare a Pseudomonas vaccine of outer membrane (OM) proteins free from lipopolysaccharide (LPS). A three step purification process including extraction, ultrafiltration and ultracentrifugation effectively removed LPS from the OM protein fraction. Approximately 2 mg of the OM proteins was obtained from 1 g of wet cell. LPS contaminant in the vaccine preparation was less than 0.003% (w/w) of protein and protease activity was not detectable. To achieve a wide range of protection, OM proteins prepared from four attenuated P. aeruginosa strains were mixed in equal amounts and used as a vaccine, which elicited in rabbits a high titer of antibody reactive to all of the seven Fisher types. The antisera from the immunized rabbit had a strong reactivity to vaccine proteins larger than 25 kDa. In a burned mouse infection model, immunization with the vaccine significantly enhanced bacterial clearance in the Pseudomonas infected skin. The vaccination also provided mice an excellent protection against Pseudomonas infection (11, 16). Data on antigenicity, mutagenicity, acute, subacute toxicity and pharmacological tests confirmed the safety of the vaccine (1, 3, 10, 12, 17). These data demonstrate that this method can be applied to manufacture a bacterial vaccine of OM proteins with safety and prophylactic efficacy at a practical low cost.

  • PDF

In Vitro Genotoxicity Assessment of a Novel Resveratrol Analogue, HS-1793

  • Jeong, Min Ho;Yang, Kwangmo;Lee, Chang Geun;Jeong, Dong Hyeok;Park, You Soo;Choi, Yoo Jin;Kim, Joong Sun;Oh, Su Jung;Jeong, Soo Kyung;Jo, Wol Soon
    • Toxicological Research
    • /
    • 제30권3호
    • /
    • pp.211-220
    • /
    • 2014
  • Resveratrol has received considerable attention as a polyphenol with various biological effects such as anti-inflammatory, anti-oxidant, anti-mutagenic, anti-carcinogenic, and cardioprotective properties. As part of the overall safety assessment of HS-1793, a novel resveratrol analogue free from the restriction of metabolic instability and the high dose requirement of resveratrol, we assessed genotoxicity in three in vitro assays: a bacterial mutation assay, a comet assay, and a chromosomal aberration assay. In the bacterial reverse mutation assay, HS-1793 did not increase revertant colony numbers in S. typhimurium strains (TA98, TA100, TA1535 and TA1537) or an E. coli strain (WP2 uvrA) regardless of metabolic activation. HS-1793 showed no evidence of genotoxic activity such as DNA damage on L5178Y $Tk^{+/-}$ mouse lymphoma cells with or without the S9 mix in the in vitro comet assay. No statistically significant differences in the incidence of chromosomal aberrations following HS-1793 treatment was observed on Chinese hamster lung cells exposed with or without the S9 mix. These results provide additional evidence that HS-1793 is non-genotoxic at the dose tested in three standard tests and further supports the generally recognized as safe determination of HS-1793 during early drug development.

The First Report to Evaluate Safety of Cyanobacterium Leptolyngbya sp. KIOST-1 for Use as a Food Ingredient: Oral Acute Toxicity and Genotoxicity Study

  • Lee, Youngdeuk;Kim, Taeho;Lee, Won-Kyu;Ryu, Yong-Kyun;Kim, Ji Hyung;Jeong, Younsik;Park, Areumi;Lee, Yeon-Ji;Oh, Chulhong;Kang, Do-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.290-297
    • /
    • 2021
  • Leptolyngbya sp. KIOST-1 (LK1) is a newly isolated cyanobacterium that shows no obvious cytotoxicity and contains high protein content for both human and animal diets. However, only limited information is available on its toxic effects. The purpose of this study was to validate the safety of LK1 powder. Following Organisation for Economic Co-operation and Development (OECD) guidelines, a single-dose oral toxicity test in Sprague Dawley rats was performed. Genotoxicity was assessed using a bacterial reverse mutation test with Salmonella typhimurium (strains TA98, TA100, TA1535, and TA1537) and Escherichia coli WP2 uvrA, an in vitro mammalian chromosome aberration test using Chinese hamster lung cells, and an in vivo mammalian erythrocyte micronucleus test using Hsd:ICR (CD-1) SPF mouse bone marrow. After LK1 administration (2,500 mg/kg), there were no LK1-related body weight changes or necropsy findings. The reverse mutation test showed no increased reverse mutation upon exposure to 5,000 ㎍/plate of the LK1 powder, the maximum tested amount. The chromosome aberration test and micronucleus assay demonstrated no chromosomal abnormalities and genotoxicity, respectively, in the presence of the LK1 powder. The absence of physiological findings and genetic abnormalities suggests that LK1 powder is appropriate as a candidate biomass to be used as a safe food ingredient.

A Brucella Omp16 Conditional Deletion Strain Is Attenuated in BALB/c Mice

  • Zhi, Feijie;Fang, Jiaoyang;Zheng, Weifang;Li, Junmei;Zhang, Guangdong;Zhou, Dong;Jin, Yaping;Wang, Aihua
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권1호
    • /
    • pp.6-14
    • /
    • 2022
  • Brucella spp. are facultative intracellular pathogens that invade, survive and proliferate in numerous phagocytic and non-phagocytic cell types, thereby leading to human and animal brucellosis. Outer membrane proteins (Omps) are major immunogenic and protective antigens that are implicated in Brucella virulence. A strain deleted of the omp16 gene has not been obtained which suggests that the Omp16 protein is vital for Brucella survival. Nevertheless, we previously constructed an omp16 conditional deletion strain of Brucella, ∆Omp16. Here, the virulence and immune response elicted by this strain were assessed in a mouse model of infection. Splenomegaly was significantly reduced at two weeks post-infection in ∆Omp16-infected mice compared to infection with the parental strain. The bacterial load in the spleen also was significantly decreased at this post-infection time point in ∆Omp16-infected mice. Histopathological changes in the spleen were observed via hematoxylin-eosin staining and microscopic examination which showed that infection with the ∆Omp16 strain alleviated spleen histopathological alterations compared to mice infected with the parental strain. Moreover, the levels of humoral and cellular immunity were similar in both ∆Omp16-infected mice and parental strain-infected mice. The results overall show that the virulence of ∆Omp16 is attenuated markedly, but that the immune responses mediated by the deletion and parental strains in mice are indistinguishable. The data provide important insights that illuminate the pathogenic strategies adopted by Brucella.

Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses

  • Cheol Gyun Kim;Won Kyong Kim;Narae Kim;Young Jin Pyung;Da-Jeong Park;Jeong-Cheol Lee;Chong-Su Cho;Hyuk Chu;Cheol-Heui Yun
    • IMMUNE NETWORK
    • /
    • 제23권6호
    • /
    • pp.47.1-47.16
    • /
    • 2023
  • Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.

Fermented Milk Containing Lacticaseibacillus rhamnosus SNU50430 Modulates Immune Responses and Gut Microbiota in Antibiotic-Treated Mice

  • Sunghyun Yoon;SungJun Park;Seong Eun Jung;Cheonghoon Lee;Woon-Ki Kim;Il-Dong Choi;GwangPyo Ko
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권6호
    • /
    • pp.1299-1306
    • /
    • 2024
  • Antibiotics are used to control infectious diseases. However, adverse effects of antibiotics, such as devastation of the gut microbiota and enhancement of the inflammatory response, have been reported. Health benefits of fermented milk are established and can be enhanced by the addition of probiotic strains. In this study, we evaluated effects of fermented milk containing Lacticaseibacillus rhamnosus (L. rhamnosus) SNUG50430 in a mouse model with antibiotic treatment. Fermented milk containing 2 × 105 colony-forming units of L. rhamnosus SNUG50430 was administered to six week-old female BALB/c mice for 1 week. Interleukin (IL)-10 levels in colon samples were significantly increased (P < 0.05) compared to water-treated mice, whereas interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) were decreased, of mice treated with fermented milk containing L. rhamnosus SNUG50430-antibiotics-treated (FM+LR+Abx-treated) mice. Phylum Firmicutes composition in the gut was restored and the relative abundances of several bacteria, including the genera Coprococcus and Lactobacillus, were increased in FM+LR+Abx-treated mice compared to PBS+Abx-treated mice. Interestingly, abundances of genus Coprococcus and Lactobacillus were positively correlated with IL-5 and IL-10 levels (P < 0.05) in colon samples and negative correlated with IFN-γ and TNF-α levels in serum samples (P < 0.001). Acetate and butyrate were increased in mice with fermented milk and fecal microbiota of FM+LR+Abx-treated mice were highly enriched with butyrate metabolism pathway compared to water-treated mice (P < 0.05). Thus, fermented milk containing L. rhamnosus SNUG50430 was shown to ameliorate adverse health effects caused by antibiotics through modulating immune responses and the gut microbiota.

어성초 ethanol 추출물의 마우스 살모넬라 감염증에 대한 항균 및 치료효과 규명 (Antibacterial and Therapeutic Effects of Houttuynia cordata Ethanol extract for Murine Salmonellosis)

  • 김동혁;임정주;이진주;정원철;신현진;이후장;김곤섭;김석
    • 한국환경농학회지
    • /
    • 제27권2호
    • /
    • pp.156-162
    • /
    • 2008
  • 항생제의 오남용으로 인한 항생제 내성을 가진 세균의 출현은 공중보건학적인 측면에서 많은 피해를 입히고 있다. 또한, 세포 내 기생세균의 경우 예방과 치료가 어려운 상황에 놓여져 있고 항생제 대체 물질개발에 많은 관심이 집중되고 있다. 어성초는 오랜 기간 동안 소독제, 이뇨제, 해열제, 항균제, 항바이러스 제제, 항염증 제제로서 사용되어왔으며 중요한 민간요법의 하나로서 인식되고 있는 바, 본 실험에서는 어성초의 ethanol 추출물이 세포내 기생 난치성 세균 감염증인 S. typhimurium의 감염증에 대한 치료효과를 검증하였다. 본 실험의 결과로서 HCEE 추출물이 탐식세포의 형태적 변화를 유도하였고, S. typhimurium에 대한 직접적인 살균작용과 탐식세포를 통한 항균작용은 미약한 것으로 나타났다. 또한 HCEE 추출물이 S. typhimurium의 탐식세포 감염 시 시간경과에 따라 감염능 및 세포내 증식능이 감소하는 것이 확인되었다. 탐식균에 의한 사멸을 유도하는 탐식세포의 NO의 산생량에 있어서는 HCEE 추출물의 처리가 탐식세포로부터 NO 산생이 감소되어 NO를 이용한 탐식세포의 균 사멸과는 직접적 연관이 없을 것으로 추정되며, 마우스 감염시험에서 HCEE를 투약이 상당한 치료효과를 나타내어 HCEE가 S. typhimurium에 의한 염증을 감소시키고, 또한 apoptosis를 유도함으로 인해 균을 제거함으로 이루어지는 것으로 추측된다. 본 연구를 통해 HCEE의 살모넬라증에 대한 치료효과를 확인 할 수 있었으며, 천연소재 약용자원을 활용한 난치성 세균 감염증에 대한 신약개발이 가능하고, 이의 활용은 항생제 오남용을 줄일 수 있고 국민보건 증진에 이바지 할 것이다.

나트륨 염 복합조성물의 마우스 살모넬라증에 대한 항균 및 치료효과 (Evaluation of Antibacterial and Therapeutic Effects of a Sodium salts Mixture against Salmonella typhimurium in Murine Salmonellosis)

  • 이어은;차춘남;박은기;김석;이후장
    • 한국식품위생안전성학회지
    • /
    • 제26권3호
    • /
    • pp.222-226
    • /
    • 2011
  • 본 연구는 세포 내 기생세균인 S. typhimurium의 세포 내 대사과정에서 중요한 역할을 하는 respiratory nitrate reductase의 활성 및 활성 억제 물질인 sodium chlorate, sodium azide, 그리고 sodium cyanide으로 조성된 복합조성물을 이용하여 RAW 264.7 세포에 감염 된 S. typhimurium의 증식억제 효과와, S. typhimurium 감염 마우스에 대한 치료효과를 평 가하기 위하여 수행되었다. 복합조성물을 이용하여 RAW 264.7 세포 감염 S. typhimurium에 대한 증식억제 효과 확인시험을 수행한 결과, 세포 배양 24시간에 대조군과 비교하여 90% 이상의 S. typhimurium의 증식이 억제되었다. 또한, S. typhimurium을 감염시킨 마우스에 복합조성물을 투여한 결과, 70%의 높은 생존율을 보였다. 따라서 본 연구의 결과로부터, sodium chlorate, sodium azide, sodium cyanide로 조성된 복합조성물을 S. tyhimurium에 감염된 마우스에 투여할 경우 S. typhimurium의 증식을 억제하여 감염증상을 치료할 수 있을 것으로 기대된다.