Loading [MathJax]/jax/output/CommonHTML/jax.js
  • Title/Summary/Keyword: Mouse embryonic stem cells

Search Result 185, Processing Time 0.026 seconds

Establishment of Mouse Embryonic Stem Cell-like Cells from In Vitro Fertilized Embryos (체외수정 생쥐 배아에서의 배아 줄기세포 확립)

  • Shin, Yong-Moon;Park, Yong-Bin;Kim, Hee-Sun;Oh, Sun-Kyung;Chun, Dae-Woo;Suh, Chang-Suk;Choe, Young-Min;Kim, Jung-Gu;Lee, Jin-Yong;Kim, Seok-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Objective: In order to acquire the technique for the establishment of human embryonic stem cells (ESe) derived from the human frozen-thawed embryos produced in IVF-ET program, this study was performed to establish mouse ESC derived from the in vitro fertilized embryos. Materials and Methods: After Fl hybrid (C57BL female × CBA mael) female mice were superovulated with PMSG and hCG treatment, their oocytes were retrieved and inseminated, and the fertilized embryos were cultured for 96-120 hours until the expected stages of blastocysts were obtained. To isolate the inner cell mass (ICM), either the blastocysts were treated with immunosurgery, or the whole embryos were cultured for 4 days. Isolated ICMs were then cultured onto STO feeder cell layer, and the resultant ICM colonies were subcultured with trypsin-EDTA treatment. During the subculture process, ESC-like cell colonies were observed with phase contrast microscopy. To identify ESC in the subcultured ESC-like cell colonies, alkaline phosphatase activity and Oct-4 (octamer-binding transcription factor-4) expression were examined by immunohistochemistry and RT-PCR, respectively. To examine the spontaneous differentiation, ESC-like cell colonies were cultured without STO feeder cell layer and leukemia inhibitory factor (LIF). Results: Seven ESC-like cell lines were established from ICMs isolated from the in vitro fertilized embryos. According to the developmental stage, the growth of ICMs isolated from the expanded blastocysts was significantly better than that of ICMs isolated from the hatched blastocysts (80.3% vs. 58.7%, p<0.05). ESC-like cell colonies were only obtained from ICMs of expanded blastocysts. However, the ICMs isolated from the embryos treated with immunosurgery were poorly grown and frequently differentiated during the culture process. The established ESC-like cell colonies were positively stained with alkaline phosphatase and expressed Oct-4, and their morphology resembled that observed in the previously reported mouse ESC. In addition, following the extended in vitro culture process, they maintained their expression of cell surface markers characteristic of the pluripotent stem cells such as alkaline phosphatase and Oct-4. When cultured without STO feeder cell layer and LIF, they were spontaneously differentiated into the various types of cells. Conclusion: The findings of this study suggest that the establishment of mouse ESC can be successfully derived from the in vitro fertilized embryos. The established ESC-like cells expressed the cell surface markers characteristic of the pluripotent stem cells and spontaneously differentiated into the various types of cells.

Decreased Contact Inhibition in Mouse Adipose Mesenchymal Stem Cells

  • Jeon, Yunmi;Lee, Myung Sook;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.329-338
    • /
    • 2012
  • The proliferation of embryonic cells or adult stem cells in tissue is critically regulated during development and repair. How limited the proliferation of cells, so far, is not much explored. Cell-cell contact proliferation inhibition is known as a crucial mechanism regulating cell proliferation in vitro and in vivo. In this study we examined the characters of mouse subcutaneous adipose derived stem cells (msADSC) whether they lost or get contact inhibition during in vitro culture. The characters of msADSC growth after confluence were analyzed using confocal microscope and the expression profiles of contact inhibition related genes were analyzed according to the morphological changes using real-time PCR method. msADSC showed overlapping growth between them but not after passage 14. The cell shapes were also changed after passage 14. The expression profiles of genes which are involved in contact inhibition were modified in the msADSC after passage 14. The differentiation ability of msADSCs to adipocyte, chondrocyte and osteocyte was not changed by such changes of gene expression profiles. Based on these results, it is revealed that smADSC were characterized by getting of strong cell-cell contact inhibition after passage 14 but the proliferation and developmental ability were not blocked by the change of cell-cell contact proliferation inhibition. These finding will help to understand the growth of adipose tissue, although further studies are needed to evaluate the physiological meaning of the cell-cell contact proliferation inhibition during in vitro culture of msADSC.

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.

Expression Profiling of Genes involved in the Control of Pluripotency Using CDNA Microarray

  • Lee, Young-Jin;Hong, Seok-Ho;Nah, Hee-Young;Chae, Jai-Hyung;Jung, Ho-Sun;Kim, Beom-Sue;Kim, Chul-Geun
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2001.10a
    • /
    • pp.18-24
    • /
    • 2001
  • To identify genes implicated in the control of pluripotency as well as characteristics of stem cells, we analyzed expression profiles of genes derived from mouse morulas, blastocysts, embryonic stem cells, mesenchymal stem cells, and uterus tissue cDNA microarray. Comparative analyses of their expression profiles identified putative clones that expressed specifically in specific samples or not in a specific sample. The expression pattern of these candidate clones was analyzed using RT-PCR and non-radioactive in situ hybridization. Functional annotation of these clones on pluripotency and stem cells and molecular mechanisms underlying many facets of mammalian development and differentiation.

  • PDF

Differentiation and Apoptosis of the Mammalian Embryo and Embryonic Stem Cells(ESC): I. Establishment of Mouse ESC and Induction of Differentiation by Reproductive Hormones (포유동물의 배아 및 기간세포의 분화와 세포사멸 기작: I. 생쥐 배아줄기세포의 확립과 분화유도에 미치는 생식호르몬의 영향)

  • 성지혜;윤현수;이종수;김철근;김문규;윤용달
    • Development and Reproduction
    • /
    • v.6 no.1
    • /
    • pp.55-66
    • /
    • 2002
  • Embryonic stem cells(ES cells) are derived from the inner cell mass(ICM) of blastocysts, which have the potentials to remain undifferentiated, to proliferate indefinitely in vitro, to differentiate into the derivates of three embryonic germ layers. ES cells are an attractive model system for studying the initial developmental decisions and their molecular mechanisms during embryogenesis. Additionally, ES cells of significant interest to those characterizing the various gene functions utilizing transgenic and gene targeting techniques. We investigated the effects of reproductive hormones, gonadotropins(GTH) and steroids on the induction of differentiation and expressions of their receptor genes using the newly established mouse ES cells. We collected the matured blastocysts of inbred mice C57BL/6J after superovulation and co-cultured with mitotically inactivated STO feeder cells. After 5 passages, we confirmed the expression alkaline phosphatase(Alk P) activity and SSEA-1, 3, 4 expressions. The protocol devised for inducing ES differentiation consisted of an aggregation steps, after 5 days as EBs in hormone treatments(FSH, LH, E2, P4, T) that allows complex signaling to occur between the cells and a dissociation step, induced differentiation through attachment culture during 7 days in hormone treatments. Hormone receptors were not increased in dose-dependent manner. All hormone receptors in ES cells treated reproductive hormones were expressed lower than those of undifferentiated ES cell except for LHR expression in E2-treated ES cells group. After hormone induced differentiation, at least some of the cells are not terminally differentiated, as is evident from the expression of Oct-4, a marker of undifferentiated. To assess their differentiation by gene expression, we analyzed the expression of 7 tissue-specific markers from all three germ layers. Most of hormone-treated group increased in the expression of gata-4 and α -fetoprotein, suggesting reproductive hormone allowed or induced differentiation of endoderm.

  • PDF

Derivation of Embryonic Germ Cells from Post Migratory Primordial Germ Cells, and Methylation Analysis of Their Imprinted Genes by Bisulfite Genomic Sequencing

  • Shim, Sang Woo;Han, Dong Wook;Yang, Ji Hoon;Lee, Bo Yeon;Kim, Seung Bo;Shim, Hosup;Lee, Hoon Taek
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.358-367
    • /
    • 2008
  • The embryonic germ cell (EGCs) of mice is a kind of pluripotent stem cell that can be generated from pre- and post-migratory primordial germ cells (PGCs). Most previous studies on DNA methylation of EGCs were restricted to 12.5 days post coitum (dpc). This study was designed to establish and characterize murine EGC lines from migrated PGCs as late as 13.5 dpc and to estimate the degrees of methylation of their imprinted genes as well as of the non-imprinted locus, Oct4, using an accurate and quantitative method of measurement. We established five independent EGC lines from post migratory PGCs of 11.5-13.5 dpc from C57BL/6 × DBA/2 F1 hybrid mouse fetuses. All the EGCs exhibited the typical features of pluripotent cells including hypomethylation of the Oct4 regulatory region. We examined the methylation status of three imprinted genes; Igf2, Igf2r and H19 in the five EGC lines using bisulfite genomic sequencing analysis. Igf2r was almost unmethylated in all the EGC lines irrespective of the their sex and stage of isolation; Igf2 and H19 were more methylated than Igf2r, especially in male EGCs. Moreover, EGCs derived at 13.5 dpc exhibited higher levels of DNA methylation than those from earlier stages. These results suggest that in vitro derived EGCs acquire different epigenotypes from their parental in vivo migratory PGCs, and that sex-specific de novo methylation occurs in the Igf2 and H19 genes of EGCs.

Mouse genetics: Catalogue and scissors

  • Sung, Young Hoon;Baek, In-Jeoung;Seong, Je Kyung;Kim, Jin-Soo;Lee, Han-Woong
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.686-692
    • /
    • 2012
  • Phenotypic analysis of gene-specific knockout (KO) mice has revolutionized our understanding of in vivo gene functions. As the use of mouse embryonic stem (ES) cells is inevitable for conventional gene targeting, the generation of knockout mice remains a very time-consuming and expensive process. To accelerate the large-scale production and phenotype analyses of KO mice, international efforts have organized global consortia such as the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotype Consortium (IMPC), and they are persistently expanding the KO mouse catalogue that is publicly available for the researches studying specific genes of interests in vivo. However, new technologies, adopting zinc-finger nucleases (ZFNs) or Transcription Activator-Like Effector (TALE) Nucleases (TALENs) to edit the mouse genome, are now emerging as valuable and effective shortcuts alternative for the conventional gene targeting using ES cells. Here, we introduce the recent achievement of IKMC, and evaluate the significance of ZFN/TALEN technology in mouse genetics.

Monoclonal antibody K312-based depletion of pluripotent cells from differentiated stem cell progeny prevents teratoma formation

  • Park, Jongjin;Lee, Dong Gwang;Lee, Na Geum;Kwon, Min-Gi;Son, Yeon Sung;Son, Mi-Young;Bae, Kwang-Hee;Lee, Jangwook;Park, Jong-Gil;Lee, Nam-Kyung;Min, Jeong-Ki
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.142-147
    • /
    • 2022
  • Human pluripotent stem cells (PSCs) have been utilized as a promising source in regenerative medicine. However, the risk of teratoma formation that comes with residual undifferentiated PSCs in differentiated cell populations is most concerning in the clinical use of PSC derivatives. Here, we report that a monoclonal antibody (mAb) targeting PSCs could distinguish undifferentiated PSCs, with potential teratoma-forming activity, from differentiated PSC progeny. A panel of hybridomas generated from mouse immunization with H9 human embryonic stem cells (hESCs) was screened for ESC-specific binding using flow cytometry. A novel mAb, K312, was selected considering its high stem cell-binding activity, and this mAb could bind to several human induced pluripotent stem cells and PSC lines. Cell-binding activity of K312 was markedly decreased as hESCs were differentiated into embryoid bodies or by retinoic acid treatment. In addition, a cell population negatively isolated from undifferentiated or differentiated H9 hESCs via K312 targeting showed a significantly reduced expression of pluripotency markers, including Oct4 and Nanog. Furthermore, K312-based depletion of pluripotent cells from differentiated PSC progeny completely prevented teratoma formation. Therefore, our findings suggest that K312 is utilizable in improving stem cell transplantation safety by specifically distinguishing residual undifferentiated PSCs.

The Effects of the Expression of GATA Binding Protein 6 on Heart and Brain Development (심장과 뇌 발달에서 GATA6 유전자 발현 감소가 미치는 영향)

  • Seo, Jungwon
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1230-1234
    • /
    • 2015
  • GATA binding protein 6 (GATA6) is a transcription factor that is expressed in the early blastocyst stage and controls the expression of important genes in the differentiation and development of the heart, pancreas, and intestine. This study confirmed the role of GATA6 in cell differentiation and organ development using mouse embryonic stem cells and zebrafish, respectively. First, the mouse embryonic stem cells were differentiated into pacemaker cardiomyocytes. An RT-PCR analysis revealed that the expression of the GATA6 gene was greatly increased from day 4 of differentiation. The expression of GATA6 was upregulated prior to increased expression of NK2 homeobox 5 (Nkx2.5) and myocyte enhancer factor 2C (MEF2C), which are critical transcription factors involved in regulating heart formation. To examine the role of GATA6 in development, GATA6 morpholino was microinjected into zebrafish embryos. Knockdown of GATA6 expression significantly decreased the heart size and heart rate in the zebrafish compared to a control. In addition, the brains were degenerated in the GATA6 morpholino-injected zebrafish. Acridine orange staining showed that knockdown of GATA6 expression increased apoptotic cells in the brain. Interestingly, knockdown of GATA6 expression decreased apoptotic cells in the early bud stage. This study points to the importance of the GATA6 gene in heart and brain development.

Identification of Candidate Porcine miRNA-302/367 Cluster and Its Function in Somatic Cell Reprogramming

  • Son, Dong-Chan;Hwang, Jae Yeon;Lee, Chang-Kyu
    • Reproductive and Developmental Biology
    • /
    • v.38 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • MicroRNAs (miRNAs) are approximately 22 nucleotides of small noncoding RNAs that control gene expression at the posttranscriptional level through translational inhibition and destabilization of their target mRNAs. The miRNAs are phylogenetically conserved and have been shown to be instrumental in a wide variety of key biological processes including cell cycle regulation, apoptosis, metabolism, imprinting, and differentiation. Recently, a paper has shown that expression of the miRNA-302/367 cluster expressed abundantly in mouse and human embryonic stem cells (ESCs) can directly reprogram mouse and human somatic cells to induced pluripotent stem cells (iPSCs) efficiently in the absence of any of the four factors, Oct4, Sox2, c-Myc, and Klf4. To apply this efficient method to porcine, we analyzed porcine genomic sequence containing predicted porcine miRNA-302/367 cluster through ENSEMBL database, generated a non-replicative episomal vector system including miRNA-302/367 cluster originated from porcine embryonic fibroblasts (PEF), and tried to make porcine iPSCs by transfection of the miRNA-302/367 cluster. Colonies expressing EGFP and forming compact shape were found, but they were not established as iPSC lines. Our data in this study show that pig miRNA-302/367 cluster could not satisfy requirement of PEF reprogramming conditions for pluripotency. To make pig iPSC lines by miRNA, further studies on the role of miRNAs in pluripotency and new trials of transfection with conventional reprogramming factors are needed.