Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.12.242

Mouse genetics: Catalogue and scissors  

Sung, Young Hoon (Department of Biochemistry, College of Life Science and Biotechnology, Laboratory Animal Research Center, Yonsei University)
Baek, In-Jeoung (Asan Institute for Life Sciences, University of Ulsan College of Medicine)
Seong, Je Kyung (College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University)
Kim, Jin-Soo (Department of Chemistry, Seoul National University)
Lee, Han-Woong (Department of Biochemistry, College of Life Science and Biotechnology, Laboratory Animal Research Center, Yonsei University)
Publication Information
BMB Reports / v.45, no.12, 2012 , pp. 686-692 More about this Journal
Abstract
Phenotypic analysis of gene-specific knockout (KO) mice has revolutionized our understanding of in vivo gene functions. As the use of mouse embryonic stem (ES) cells is inevitable for conventional gene targeting, the generation of knockout mice remains a very time-consuming and expensive process. To accelerate the large-scale production and phenotype analyses of KO mice, international efforts have organized global consortia such as the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotype Consortium (IMPC), and they are persistently expanding the KO mouse catalogue that is publicly available for the researches studying specific genes of interests in vivo. However, new technologies, adopting zinc-finger nucleases (ZFNs) or Transcription Activator-Like Effector (TALE) Nucleases (TALENs) to edit the mouse genome, are now emerging as valuable and effective shortcuts alternative for the conventional gene targeting using ES cells. Here, we introduce the recent achievement of IKMC, and evaluate the significance of ZFN/TALEN technology in mouse genetics.
Keywords
Gene targeting; Knockout; TALEN; ZFN;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cui, X., Ji, D., Fisher, D. A., Wu, Y., Briner, D. M. and Weinstein, E. J. (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat. Biotechnol. 29, 64-67.   DOI   ScienceOn
2 Paigen, K. (2003) One hundred years of mouse genetics: an intellectual history. II. The molecular revolution (1981-2002). Genetics 163, 1227-1235.
3 Paigen, K. (2003) One hundred years of mouse genetics: an intellectual history. I. The classical period (1902-1980). Genetics 163, 1-7.
4 Lim, S. K., Llaguno, S. R., McKay, R. M. and Parada, L. F. (2011) Glioblastoma multiforme: a perspective on recent findings in human cancer and mouse models. BMB Rep. 44, 158-164.   DOI   ScienceOn
5 International Mouse Knockout, C., Collins, F. S., Rossant, J. and Wurst, W. (2007) A mouse for all reasons. Cell 128, 9-13.   DOI   ScienceOn
6 Pettitt, S. J., Liang, Q., Rairdan, X. Y., Moran, J. L., Prosser, H. M., Beier, D. R., Lloyd, K. C., Bradley, A. and Skarnes, W. C. (2009) Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat. Methods 6, 493-495.   DOI   ScienceOn
7 Kim, I. Y., Shin, J. H. and Seong, J. K. (2010) Mouse phe nogenomics, toolbox for functional annotation of human genome. BMB Rep. 43, 79-90.   DOI   ScienceOn
8 Valenzuela, D. M., Murphy, A. J., Frendewey, D., Gale, N. W., Economides, A. N., Auerbach, W., Poueymirou, W. T., Adams, N. C., Rojas, J., Yasenchak, J., Chernomorsky, R., Boucher, M., Elsasser, A. L., Esau, L., Zheng, J., Griffiths, J. A., Wang, X., Su, H., Xue, Y., Dominguez, M. G., Noguera, I., Torres, R., Macdonald, L. E., Stewart, A. F., DeChiara, T. M. and Yancopoulos, G. D. (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat. Biotechnol. 21, 652-659.   DOI   ScienceOn
9 Rodriguez, C. I., Buchholz, F., Galloway, J., Sequerra, R., Kasper, J., Ayala, R., Stewart, A. F. and Dymecki, S. M. (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139-140.   DOI   ScienceOn
10 Skarnes, W. C., Rosen, B., West, A. P., Koutsourakis, M., Bushell, W., Iyer, V., Mujica, A. O., Thomas, M., Harrow, J., Cox, T., Jackson, D., Severin, J., Biggs, P., Fu, J., Nefedov, M., de Jong, P. J., Stewart, A. F. and Bradley, A. (2011) A conditional knockout resource for the genome- wide study of mouse gene function. Nature 474, 337-342.   DOI   ScienceOn
11 O'Gorman, S., Dagenais, N. A., Qian, M. and Marchuk, Y. (1997) Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 94, 14602-14607.   DOI
12 Indra, A. K., Warot, X., Brocard, J., Bornert, J. M., Xiao, J. H., Chambon, P. and Metzger, D. (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucl. Acids Res. 27, 4324-4327.   DOI   ScienceOn
13 Chapman, H. A., Li, X., Alexander, J. P., Brumwell, A., Lorizio, W., Tan, K., Sonnenberg, A., Wei, Y. and Vu, T. H. (2011) Integrin alpha6beta4 identifies an adult distal lung epithelial population with regenerative potential in mice. J. Clin. Invest. 121, 2855-2862.   DOI   ScienceOn
14 Smedley, D., Salimova, E. and Rosenthal, N. (2011) Cre recombinase resources for conditional mouse mutagenesis. Methods 53, 411-416.   DOI   ScienceOn
15 Heffner, C. S., Herbert Pratt, C., Babiuk, R. P., Sharma, Y., Rockwood, S. F., Donahue, L. R., Eppig, J. T. and Murray, S. A. (2012) Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat. Commun. 3, 1218.   DOI   ScienceOn
16 Jin, X. L., Guo, H., Mao, C., Atkins, N., Wang, H., Avasthi, P. P., Tu, Y. T. and Li, Y. (2000) Emx1-specific expression of foreign genes using "knock-in" approach. Biochem. Biophys. Res. Commun. 270, 978-982.   DOI   ScienceOn
17 Bibikova, M., Beumer, K., Trautman, J. K. and Carroll, D. (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764.   DOI   ScienceOn
18 Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. and Gregory, P. D. (2010) Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636-646.   DOI   ScienceOn
19 Carroll, D. (2011) Genome engineering with zinc-finger nucleases. Genetics 188, 773-782.   DOI
20 Kim, H. J., Lee, H. J., Kim, H., Cho, S. W. and Kim, J. S. (2009) Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 19, 1279-1288.   DOI   ScienceOn
21 Kim, S., Lee, M. J., Kim, H., Kang, M. and Kim, J. S. (2011) Preassembled zinc-finger arrays for rapid construction of ZFNs. Nat. Methods 8, 7.
22 Kay, S., Hahn, S., Marois, E., Hause, G. and Bonas, U. (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318, 648-651.   DOI   ScienceOn
23 Pabo, C. O., Peisach, E. and Grant, R. A. (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313-340.   DOI   ScienceOn
24 Bae, K. H., Kwon, Y. D., Shin, H. C., Hwang, M. S., Ryu, E. H., Park, K. S., Yang, H. Y., Lee, D. K., Lee, Y., Park, J., Kwon, H. S., Kim, H. W., Yeh, B. I., Lee, H. W., Sohn, S. H., Yoon, J., Seol, W. and Kim, J. S. (2003) Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat. Biotechnol. 21, 275-280.   DOI   ScienceOn
25 Kim, J. S. and Pabo, C. O. (1998) Getting a handhold on DNA: design of poly-zinc finger proteins with femtomolar dissociation constants. Proc. Natl. Acad. Sci. U.S.A. 95, 2812-2817.   DOI
26 Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A. and Bonas, U. (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509-1512.   DOI   ScienceOn
27 Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A. J. and Voytas, D. F. (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757-761.   DOI
28 Li, T., Huang, S., Jiang, W. Z., Wright, D., Spalding, M. H., Weeks, D. P. and Yang, B. (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucl. Acids Res. 39, 359-372.   DOI   ScienceOn
29 Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., Meng, X., Paschon, D. E., Leung, E., Hinkley, S. J., Dulay, G. P., Hua, K. L., Ankoudinova, I., Cost, G. J., Urnov, F. D., Zhang, H. S., Holmes, M. C., Zhang, L., Gregory, P. D. and Rebar, E. J. (2011) A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143-148.   DOI   ScienceOn
30 Mussolino, C., Morbitzer, R., Lutge, F., Dannemann, N., Lahaye, T. and Cathomen, T. (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucl. Acids Res. 39, 9283-9293.   DOI   ScienceOn
31 Bitinaite, J., Wah, D. A., Aggarwal, A. K. and Schildkraut, I. (1998) FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. U.S.A. 95, 10570-10575.   DOI
32 Cornu, T. I., Thibodeau-Beganny, S., Guhl, E., Alwin, S., Eichtinger, M., Joung, J. K. and Cathomen, T. (2008) DNAbinding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol. Ther. 16, 352-358.   DOI   ScienceOn
33 Miller, J. C., Holmes, M. C., Wang, J., Guschin, D. Y., Lee, Y. L., Rupniewski, I., Beausejour, C. M., Waite, A. J., Wang, N. S., Kim, K. A., Gregory, P. D., Pabo, C. O. and Rebar, E. J. (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778-785.   DOI   ScienceOn
34 Ramirez, C. L., Foley, J. E., Wright, D. A., Muller-Lerch, F., Rahman, S. H., Cornu, T. I., Winfrey, R. J., Sander, J. D., Fu, F., Townsend, J. A., Cathomen, T., Voytas, D. F. and Joung, J. K. (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat. Methods 5, 374-375.   DOI   ScienceOn
35 Vasquez, K. M., Marburger, K., Intody, Z. and Wilson, J. H. (2001) Manipulating the mammalian genome by homologous recombination. Proc. Natl. Acad. Sci. U.S.A. 98, 8403-8410.   DOI   ScienceOn
36 Kim, J. S., Lee, H. J. and Carroll, D. (2010) Genome editing with modularly assembled zinc-finger nucleases. Nat. Methods 7, 91; author reply 91-92.
37 Joung, J. K., Voytas, D. F. and Cathomen, T. (2010) Reply to "Genome editing with modularly assembled zinc-finger nucleases". Nat. Methods 7, 91-92.
38 Lieber, M. R. (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181-211.   DOI   ScienceOn
39 Rouet, P., Smih, F. and Jasin, M. (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 91, 6064-6068.   DOI
40 Porteus, M. H. and Baltimore, D. (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763.   DOI   ScienceOn
41 Carlson, D. F., Tan, W., Lillico, S. G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D. F., Long, C. R., Whitelaw, C. B. and Fahrenkrug, S. C. (2012) Efficient TALEN-mediated gene knockout in livestock. Proc. Natl. Acad. Sci. U.S.A. 109, 17382-17387.   DOI
42 Meyer, M., de Angelis, M. H., Wurst, W. and Kuhn, R. (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc. Natl. Acad. Sci. U.S.A. 107, 15022-15026.   DOI   ScienceOn
43 Meyer, M., Ortiz, O., Hrabe de Angelis, M., Wurst, W. and Kuhn, R. (2012) Modeling disease mutations by gene targeting in one-cell mouse embryos. Proc. Natl. Acad. Sci. U.S.A. 109, 9354-9359.   DOI
44 Mussolino, C. and Cathomen, T. (2012) TALE nucleases: tailored genome engineering made easy. Curr. Opin. Biotechnol. 23, 644-650.   DOI   ScienceOn
45 Wood, A. J., Lo, T. W., Zeitler, B., Pickle, C. S., Ralston, E. J., Lee, A. H., Amora, R., Miller, J. C., Leung, E., Meng, X., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D. and Meyer, B. J. (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333, 307.   DOI   ScienceOn
46 Geurts, A. M., Cost, G. J., Freyvert, Y., Zeitler, B., Miller, J. C., Choi, V. M., Jenkins, S. S., Wood, A., Cui, X., Meng, X., Vincent, A., Lam, S., Michalkiewicz, M., Schilling, R., Foeckler, J., Kalloway, S., Weiler, H., Menoret, S., Anegon, I., Davis, G. D., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., Jacob, H. J. and Buelow, R. (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433.   DOI   ScienceOn
47 Huang, P., Xiao, A., Zhou, M., Zhu, Z., Lin, S. and Zhang, B. (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat. Biotechnol. 29, 699-700.   DOI   ScienceOn
48 Sander, J. D., Cade, L., Khayter, C., Reyon, D., Peterson, R. T., Joung, J. K. and Yeh, J. R. (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat. Biotechnol. 29, 697-698.   DOI   ScienceOn
49 Tesson, L., Usal, C., Menoret, S., Leung, E., Niles, B. J., Remy, S., Santiago, Y., Vincent, A. I., Meng, X., Zhang, L., Gregory, P. D., Anegon, I. and Cost, G. J. (2011) Knockout rats generated by embryo microinjection of TALENs. Nat. Biotechnol. 29, 695-696.   DOI   ScienceOn
50 Rao, A., Richards, T. L., Simmons, D., Zahniser, N. R. and Sorkin, A. (2012) Epitope-tagged dopamine transporter knock-in mice reveal rapid endocytic trafficking and filopodia targeting of the transporter in dopaminergic axons. FASEB J. 26, 1921-1933.   DOI