• Title/Summary/Keyword: Mouse calvarial osteoblasts

Search Result 20, Processing Time 0.035 seconds

Rolipram, a Phosphodiesterase 4 Inhibitor, Stimulates Osteoclast Formation by Inducing TRANCE Expression in Mouse Calvarial Cells

  • Cho, Eun-Sook;Yu, Ja-Heon;Kim, Mi-Sun;Yim, Mi-Jung
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1258-1262
    • /
    • 2004
  • Phosphodiesterase (PDE) 4 is an enzyme that degrades intracellular cAMP. In the present study, the effect of rolipram, a specific phosphodiesterase (PDE) 4 inhibitor, on osteoclast formation was investigated. Rolipram induced osteoclast formation in cocultures of mouse bone marrow cells and calvarial osteoblasts. This activity was not observed in the absence of calvarial osteoblasts, suggesting that calvarial osteoblasts are likely target cells of rolipram. Osteoclast formation by rolipram was completely blocked by the addition of osteoprotegerin (OPG), a soluble decoy receptor for the osteoclast differentiation factor, TNF-related activation-induced cytokine (TRANCE, identical to RANKL, ODF, and OPGL). Northern blot analysis revealed the effect of rolipram to be associated with the increased expression of TRANCE mRNA in mouse calvarial osteoblasts. Collectively, these data indicate that PDE4 inhibitor up-regulates the TRANCE mRNA expression in osteoblasts, which in turn controls osteoclast formation.

Regulatory Effects of Cyclic AMP on Osteoclast Formation (조골세포내 cAMP 농도 변화가 파골세포 형성에 미치는 영향)

  • Chun Yunna;Yim Mijung
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.109-113
    • /
    • 2005
  • In the present study treatment of IBMX, a phosphodiesterase (PDE) inhibitor, alone induced osteoclast formation in co-cultures of mouse bone marrow cells and calvarial osteoblasts. However, treatment of IBMX in combination with prostaglandin $E_2\;(PGE_2)$ inhibited osteoclast formation in a dose-dependent manner. Among various isozyme-specific PDE inhibitors, a PDE4 specific inhibitor, rolipram, showed similar effects as IBMX on osteoclast formation. To address the involvement of cyclic adenosine monophosphate (cAMP) in osteoclast formation, cAMP concentration in calvarial osteoblasts was investigated. When calvarial osteoblasts were co-cultured with IBMX alone or in combination with $PGE_2$, the patterns of cAMP concentration in calvarial osteoblasts were differ each other suggesting that cAMP in calvarial osteoblasts subtly regulates osteoclast formation.

Effect of Pentoxifylline, a Phosphodiesterase Inhibitor, on Osteoclast Formation (Phosphodiesterase 저해제 Pentoxifylline이 파골세포 분화에 미치는 영향)

  • 김민혜;전윤나;임미정
    • YAKHAK HOEJI
    • /
    • v.48 no.3
    • /
    • pp.197-201
    • /
    • 2004
  • Phosphodiesterases (PDEs) are enzymes that degrade intracellular cAMP. In the present study, pentoxifylline, a PDE inhibitor, induced osteoclast formation in co-cultures of mouse bone marrow cells and calvarial osteoblasts. To address the involvement of the osteoclast differentiation factor TNF-related activation-induced cytokine (TRANCE, identical to RANKL, ODF, and OPGL), mouse bone marrow cells and calvarial osteoblasts were co-cultured with pentoxifylline in the presence of OPG, a decoy receptor for TRANCE. The osteoclastogenic effect of pentoxifylline was completely blocked by addition of OPG, suggesting that TRANCE is involved in the osteoclast formation induced by pentoxifylline, Northern blot analysis revealed that pentoxifylline significantly induced TRANCE mRNA expression in calvarial osteoblasts. These results suggests that pentoxifylline regulates TRANCE expression in osteoblasts, which in turn controls osteoclast formation.

X-ray radiation at low doses stimulates differentiation and mineralization of mouse calvarial osteoblasts

  • Park, Soon-Sun;Kim, Kyoung-A;Lee, Seung-Youp;Lim, Shin-Saeng;Jeon, Young-Mi;Lee, Jeong-Chae
    • BMB Reports
    • /
    • v.45 no.10
    • /
    • pp.571-576
    • /
    • 2012
  • Radiotherapy is considered to cause detrimental effects on bone tissue eventually increasing bone loss and fracture risk. However, there is a great controversy on the real effects of irradiation itself on osteoblasts, and the mechanisms by which irradiation affects osteoblast differentiation and mineralization are not completely understood. We explored how X-ray radiation influences differentiation and bone-specific gene expression in mouse calvarial osteoblasts. Irradiation at 2 Gy not only increased differentiation and mineralization of the cells, but also upregulated the expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin at early stages of differentiation. However, irradiation at higher doses (>2 Gy) did not stimulate osteoblast differentiation, rather it suppressed DNA synthesis by the cells without a toxic effect. Additional experiments suggested that transforming growth factor-beta 1 and runt-transcription factor 2 play important roles in irradiation- stimulated bone differentiation by acting as upstream regulators of bone-specific markers.

Effects of Bambusae concretio Silicea on Suppression of Collagenolysis and Bone Resorption in Mouse Calvarial Osteoblasts

  • Lee Seong-Choon;Yoon Cheol-Ho;Jeong Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.15-25
    • /
    • 2004
  • Objective : We studied the effect of Bambusae concretio Silicea (BCS) on bone metabolism. Methods : At first, we treated PTH, 1,25(OH)₂D₃, mononuclear cell conditioned medium (MCM) and IL-1 to osteoblast cells derived from mouse calvarial bone explants in vitro, and then investigated the activities of collagenolysis and bone resorption factors. Results : BCS extracts have no cytotoxicities in concentrations of 1-150 ㎍/ml. BCS had protective activity against PTH (5 units/ml), MCM (5%, v/v), 1,25(OH)₂D₃ (20 ng/ml), IL-1α(2 ng/ml) and IL-1β, (1 ng/ml)-induced collagenolysis in the mouse calvarial cells. And, pretreatment of BCS for 1 hr significantly reduced the collagenolysis. Furthermore, it was much more expressed at 16 hrs after BCS (50 ㎍/ml)-pretreatment. And, BCS significantly protected against enhanced collagenolysis induced by IL-1α and IL-1β. Conclusion : BCS extracts inhibited the bone resorption in mouse calvarial bone cell;, thus BCS could be used clinically for bone diseases.

  • PDF

INFLUENCE OF CO-CULTURED FIBROBLASTS ON THE DIFFERENTIATION OF MOUSE CALVARIA-DERIVED UNDIFFERENTIATED MESENCHYMAL CELLS IN VITRO (복합 및 유격배양한 섬유모세포가 마우스 두개관 미분화간엽세포의 골세포 분화에 미치는 영향)

  • Hwang, Yu-Sun;Kim, Myung-Rae
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.2
    • /
    • pp.114-125
    • /
    • 2002
  • This study was designed to evaluate the influence of fibroblasts or connective tissue from mouse oral mucosa on differentiation of neonatal mouse calvaria-derived osteoblasts and mineralization of bone nodules. Primary cell cultures from mouse calvarial osteoblasts and 2-4 passaged fibroblasts from oral mucosa were co-cultured in monolayer cultures, devided into 6 experimental group according to cell density or cell confluency. Osteoblasts were also co-cultured with fibroblasts in $Transwell^{(R)}$ culture plate with different co-cultured period according to osteoblast differentiation. The alkaline phosphatase activity were measured in monolayer cultures and cultures using $Transwell^{(R)}$. The mineralized bone nodules were presented by Von Kossa staining and density of mineralized nodules was measured by image analysis. The connective tissues with or without osteoblast seeding were cultured and examined histologically by Von Kossa and Trichrome Goldner staining. The results were as follows; 1. Prolonged maturation of matrix and delayed mineralization of bone nodules were resulted in monolayer cultures. 2. Co-culture of fibroblast with osteoblast using $Transwell^{(R)}$ during osteoblast proliferation stage stimulated proliferation of osteoblasts and increased alkaline phosphatase activity and mineralization of bone nodules. 3. Co-culture of fibroblast with osteoblast using $Transwell^{(R)}$ during matrix mineralization stage decreased and delayed mineralization of bone nodules. 4. In vitro cultured connective tissue with osteoblast seeding resulted in proliferation of osteoblasts and matrix formation with mineralization.

A Study on Bone Formation & Osteoporosis by Taeyoungion-Jahage Extracts

  • Kim, Yi-Geun;Seong, Jun-Ho;Kim, Dong-Il;Lee, Tae-Kyun;Kim, Jun-Ki;Park, Young-Duck
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.15 no.4
    • /
    • pp.45-60
    • /
    • 2002
  • Mouse calvarial osteoblast cells were isolated and cultured. To examine whether the cells produce active gelatinases in culture medium or not,the cells were analyzed using by zymograsphic analysis on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). We show that mouse calvarial osteoblasts in culture constitutively synthesize progelatinase- A. Then, mouse osteoblasts, which were stimulated by PTH, $1,25(OH)_2D_3$, mononuclear cell conditioned medium (MCM) and IL-1 as bone resorption agent's, showed increased collagenolysis by producing the active gelatinase. However, treatment of indomethacin and dexamethasone significantly decreased those effects of collagenolysis in mouse osteoblastic cells. On the other hand, IL-1 in stimulating bone resorption was examined using fetal mouse long bone organ culture. IL-1 stimulated bone resorption and produced marked resorption when present simultaneously. Furthermore, when it was examined the effects of indomethacin and dexamethasone on the dose dependent responses of $IL-1{\alpha}$, indomethacin and dexametasone produced a rightward shift in the IL-1 dose response curve. The results of in vitro cytotoxicities showed that Taeyoungjon-Jahage water extracts(T.Y.J-J.H.G extracts) have no any cytotoxicities in concentrations of $1-200\;{\mu}g/ml$ and furthermore there is no any cytotoxicity even in concentration of $300\;{\mu}g/ml$ on mouse calvarial bone cells. T.Y.J.-J.H.G. extracts had protective activity against PTH (2 units/mI), or MCM (5%, v/v), or $rhIL-1{\alpha}$ (1 ng/mI) or $1,25(OH)_2D3$ (10 ng/ml) , $IL-1{\alpha}$ and $IL-1{\beta}-induced$ collagenolysis in the mouse calvarial cells. Pretreatment of the T.Y.J.-J.H.G.extracts for 1 h, which by itself had little effect on cell survival, did not enhance the collagenolysis, nor significantly reduced the collagenolysis by pretreatment. Furthermore. the medicinal extracts were shown to have the protective effects against collagenolysis induced by $IL-1{\alpha}$ and $IL-1{\beta}$. Pretreatment of the extracts for 1 h significantly reduced the collagenolysis. Interestingly, the T.Y.J.-J.H.G. extracts were shown to have the inhibiting effects against gelatinase enzyme and processing activity induced by the bone resortion agents of PTH, $1,25(OH)_2D_3$, $IL-1{\beta}$ and $IL-1{\alpha}$, with strong protective effect in pretreatment with the extracts. T.Y.J.-J.H.G. extracts were shown to have the inhibiting effects against $IL-1{\alpha}-$ and $IL-1{\beta}-stimulated$ bone resorption and the effect of the pretreatment with a various concentrations of the medicinal extracts were significant. The inhibition extent and phenomena of IL-1 stimulated bone resorption by nonsteroidal anti-inflammatory agents of indomethacin and dexamethasone were similar to those obtained by T.Y.J.-J.H.G. extracts treatment in the mouse calvarial tissue culture system. These results indicated that the T.Y.J.-J.H.G.-water extracts are highly stable and applicable to clinical uses in osteoporosis.

  • PDF

Effects of complex extracts having Drynariae Rhizoma on suppression of collagenolysis and bone resorption in mouse calvarial osteoblasts (골쇄보(骨碎補) 복합제제가 생쥐의 calvarial osteoblast에서 collagen 용해와 골재흡수에 미치는 영향)

  • Hong, Shi-Nae;Jeong, Ji-Cheon
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.9
    • /
    • pp.179-191
    • /
    • 2000
  • Anti-bone resorption properties of the Korean herbal medicine, CEDR, which is comprised 5 herbs of [Drynariae Rhizoma, Loranthi Ramus, Cibotii Rhizoma, Amydae carapax, Psoraleae semen], were investigated. Mouse calvarial osteoblast cells were isolated and cultured. Mouse osteoblasts, which were stimulated by PTH, $1,25(OH)_2D_3$, $TNF-\alpha$ and IL-1 as bone resorption agents, showed increased collagenolysis by producing the active gelatinase. IL-1 in stimulating bone resorption was examined using fetal mouse long bone organ culture. IL-1 stimulated bone resorption and produced marked resorption when present simultaneously. The results of in vitro cytotoxicities showed that CEDR extracts have no any cytotoxicities in concentrations of $1-60{\mu}g/ml$ and furthermore there is no any cytotoxicity even in concentration of $120{\mu}g/ml$ on mouse calvarial bone cells. CEDR extracts had protective activity against PTH (5 units/ml, or $IL-1{\alpha}$ (1 ng/ml) or $TNF-\alpha$ or $1,25(OH)_2D_3$ (20 ng/ml), $IL-1{\alpha}$ and $IL-1{\beta}-induced$ collagenolysis in the mouse calvarial cells. Pretreatment of the CEDR extracts for 1 h, which by itself had little effect on cell survival, did not enhance the collagenolysis, nor significantly reduced the collagenolysis by pretreatment. Furthermore, the medicinal extracts were shown to have the protective effects against collagenolysis induced by $IL-1{\alpha}$ and $IL-1{\beta}$. Pretreatment of the extracts for 1 h significantly reduced the collagenolysis. Interestingly, the CEDR extracts were shown to have the inhibiting effects against gelatinase enzyme and processing activity induced by the bone resorption agents of PTH, $1,25(OH)_2D_3$, $TNF-\alpha$, $IL-1{\beta}$ and $IL-1{\alpha}$ with strong protective effect in pretreatment with the extracts. CEDR extracts were shown to have the inhibiting effects against $IL-1{\alpha}-$ and $IL-1{\beta}-stimulated$ bone resorption and the effect of the pretreatment with a various concentrations of the medicinal extracts were significant. These results indicated that the CEDR extracts are highly stable and applicable to clinical uses in osteoporosis.

  • PDF

Effects of The pilose antler of Cervus Korean TEMMINCK var. mantchuricus Swinhoe(DAS), herbal acupuncture solution on suppression of collagenolysis and bone resorption in mouse calvarial osteoblasts (녹용약침액이 mouse의 두개골 골아세포에서 collagen용해와 골재흡수에 미치는 효과)

  • Kim, Joo-kyung;Kim, Kap-sung
    • Journal of Acupuncture Research
    • /
    • v.21 no.4
    • /
    • pp.225-236
    • /
    • 2004
  • 본 실험에서는 녹용 약침액의 항 골재흡수 속성을 조사하였다. PTH, $1,25(OH)_2D_3$와 IL-1을 각각 골재흡수 인자로 사용하여 생쥐의 두개골에서 osteoblast 세포를 격리, 배양, 그리고 자극시켰을 때 collagenolysis의 증가를 보였다. 두 가지를 동시에 사용한 결과, IL-1은 골재흡수성을 촉진시키고 재 흡수력을 생산하였다. In vitro에서의 세포독성 결과는 $1-200{\mu}g/ml$의 녹용 약침액 농도 분포에서 무세포독성을 보였다. 또한 녹용 약침액은 생쥐의 두개골 골아세포 내에서 PTH (2 unit/ml), IL-$1{\alpha}$ (1 ng/ml), $1,25(OH)_2D_3$ (10 ng/ml), IL-$1{\alpha}$ 및 IL-$1{\beta}$로 인해 유발된 collagenolysis에 대해서 대항하는 보호활동성을 나타내었다. 녹용약침액은 IL-$1{\alpha}$ 와 IL-$1{\beta}$로 인해 유발된 collagenolysis에 대항하는 보호활동성을 지녔다. DAS는 IL-$1{\alpha}$와 IL-$1{\beta}$로 인해 촉진된 골재 흡수력을 억제하는 효과를 보였다. 이와 같은 결과는 녹용약침액이 골다공증과 연관된 질환에 대해서 매우 안정적인 임상적 사용이 가능한 것을 관찰할 수 있으므로 추후 이와 관련한 지속적인 연구가 필요할 것으로 사료되었다.

  • PDF

High Extracellular Calcium Increased Expression of Ank, PC-1 and Osteopontin in Mouse Calvarial Cells

  • Song, Mi-Na;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.33 no.1
    • /
    • pp.33-43
    • /
    • 2008
  • In the process of bone remodeling, mineral phase of bone is dissolved by osteoclasts, resulting in elevation of calcium concentration in micro-environment. This study was performed to explore the effect of high extracellular calcium ($Ca{^{2+}}_e$) on mineralized nodule formation and on the expression of progressive ankylosis (Ank), plasma cell membrane glycoprotein-1 (PC-1) and osteopontin by primary cultured mouse calvarial cells. Osteoblastic differentiation and mineralized nodule formation was induced by culture of mouse calvarial cells in osteoblast differentiation medium containing ascorbic acid and ${\beta}$-glycerophosphate. Although Ank, PC-1 and osteopontin are well known inhibitors of mineralization, expression of these genes were induced at the later stage of osteoblast differentiation during when expression of osteocalcin, a late marker gene of osteoblast differentiation, was induced and mineralization was actively progressing. High $Ca{^{2+}}_e$(10 mM) treatment highly enhanced mRNA expression of Ank, PC-1 and osteopontin in the late stage of osteoblast differentiation but not in the early stage. Inhibition of p44/42 MAPK activation but not that of protein kinase C suppressed high $Ca{^{2+}}_{e^-}$induced expression of Ank, PC-1 and osteopontin. When high $Ca{^{2+}}_e$(5 mM or 10 mM) was present in culture medium during when mineral deposition was actively progressing, matrix calcifiation was significantly increased by high $Ca{^{2+}}_e$. This stimulatory effect was abolished by pyrophosphate (5 mM) or levamisole (0.1-0.5 mM), an alkaline phosphatase inhibitor. In addition, probenecid (2mM), an inhibitor of Ank, suppressed matrix calcification in both control and high $Ca{^{2+}}_{e^-}$treated group, suggesting the possible role of Ank in matrix calcification by osteoblasts. Taken together, these results showed that high $Ca{^{2+}}_e$ stimulates expression of Ank, PC-1 and osteopontin as well as matrix calcification in late differentiation stage of osteoblasts and that p44/42 MAPK activation is involved in high $Ca{^{2+}}_{e^-}$induced expression of Ank, PC-1 and osteopontin.