• Title/Summary/Keyword: Mountainous watersheds

Search Result 25, Processing Time 0.028 seconds

Development of Hydrologic Simulation Model for the Prediction of Long-Term Runoff from a Small Watershed

  • 고덕구;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.33-46
    • /
    • 1990
  • Abstract Over 700/0 of the rural land area in Korea is mountainous and small watersheds provide most of the water resources for agricutural use. To provide an appropriate tool for the agricultural water resource development project, SNUA2, a mathematical model for simulating the physical processes governing the precipitation-runoff relationships and predicting the storm and long-term runoff quantities from the small mountainous watersheds was developed. The hydrological characteristics of small mountainous watersheds were reviewed to select appropriate theories for the simulation of the runoff processes, and a deterministic and distributed model was developed. In this, subsurface flows are routed by solving Richard's two dimensional equation, the dynamics of soil moisture contents are simulated by the consideration of phenological factors of canopy plants and surface flows are routed by solving the kinematic wave theory by numerical analysis. As a result of an application test of the model to the Sanglim watershed, peak flow rates of storm runoff were over-estimated by up to 184.2%. The occurence time of peak flow and total runoff volume of storm runoffs simulated were consistent with observed values and the annual runoff volumes were simulated in the error range of less than 5.8%.

  • PDF

Study of Snow Depletion Characteristics at Two Mountainous Watersheds Using NOAA AVHRR Time Series Data

  • Shin, Hyungjin;Park, Minji;Chae, Hyosok;Kim, Saetbyul;Kim, Seongjoon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.315-324
    • /
    • 2013
  • Spatial information of snow cover and depth distribution is a key component for snowmelt runoff modeling. Wide snow cover areas can be extracted from NOAA AVHRR or Terra MODIS satellite images. In this study eight sets of annual snow cover data (1997-2006) in two mountainous watersheds (A: Chungju-Dam and B: Soyanggang-Dam) were extracted using NOAA AVHRR images. The distribution of snow depth within the Snow Cover Area (SCA) was generated using snowfall data from ground meteorological observation stations. Snow depletion characteristics for the two watersheds were analyzed snow distribution time series data. The decreased pattern of SCA can be expressed as a logarithmic function; the determination coefficients were 0.62 and 0.68 for the A and B watersheds, respectively. The SCA decreased over 70% within 10 days from the time of maximum SCA.

Application of SDAHL-74 Watershed Model to a Long Term Runoff Analysis in the Mountainous Watershed (산지유역에 대한 USDAHL-74 유역수문모형의 장기유출 해석적용)

  • 권순국;고덕구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.2
    • /
    • pp.53-63
    • /
    • 1987
  • Due to their wide range of application, deterministic comprehensive hydrologic models using digital computers have been developed in all countries of the world and researches are being undertaken for their appropriate applications. The aim of this study has been to demonstrate the practical implementation of a physically based distributed hydrologic model, the USDAHL-74 model and to investigate its ability to simulate the long term estimate of water balance quantities in a Korean mountainous watershed. Application of the model to Dochuk watershed indicates the following results. 1.Since the USDAHL-74 model includes all the major components of the hydrologic cycle in agricultural watersheds, thus is comprehnsive, the model seems to have a wide range of application from the fact that simulation results obtained are not only runoff volumes m various time units but their spatial variation as well as even soil moisture within the watershed. 2.An approximate calibration to determine the parameter values in the model using various data obtained from D0chuk shed shows that the simulation error of yearly runoff volume is only 0.6 % and a correlation coefficient between observed daily runoff volume and simulated one is 0.91 in all calibrated period.3.As a verification test of the model, runoff volumes are simulated using 1986 year data without changing the parameter values determined by 1985 year data. The tests show that the USDAHL-74 model is a flexible tool and that realistic production to simulate the long term estimate of runoff in Korean mountainous watershed could be obtained using only a short period of calibration.4. Despite of the encouraging results, there still remain minor problems concerning the practical application of the model to improve the result of simulations. Some of these are the small descrepancies between observed and simulated daily runoff volume appeared in the vicinity of peaks and the recession of1 the daily hydrographs and the model performance for the frozen ground and melting process in the model. 5. Alough the use of parameter with physical significance and the ability to improve calibrations on the basis of physical reasoning represents advantages in the simulation for ungaged watersheds, further researches are needed to use the USDAHL-74 mode to simulate runoff in ungaged watersheds.

  • PDF

An Assessment Method for Hazardous Region of Flash Flood in Mountainous Areas (산지유역의 돌발홍수 위험지역 평가기법)

  • Lee, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4629-4634
    • /
    • 2010
  • Most prevention efforts have been made for relatively large watersheds near to channel flow. However, as economical development and the expansion of leisure areas to mountainous region, human casualty by flash flood occurs frequently, requiring additional prevention activity. Therefore, to minimize the damage of human lives and property by flash flood, we develop a methodology to assess the risk of flash flood occurrence for mountainous areas considering various factors involving it. For accomplishing the task, we selected the assessment indexes such as the characteristics of region, rainfall and land in mountainous area. And considering the characteristics of these indexes, the assessment method was suggested to assess and select the reasonable points for flash flood warning system. The suggested method was applied to BongHwa region and the application process of this method was explained.

Estimation and evaluation on the return period of flash flood for small mountainous watersheds in the Han River basin (한강유역 산지소하천의 돌발홍수 재현기간 산정 및 평가)

  • Kim, Hwa-Yeon;Kim, Jeong-Bae;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.245-253
    • /
    • 2019
  • The objectives of this study are to estimate the return period of flash flood and evaluate its appropriateness based on the actual observation events for small mountainous watersheds in the Han River basin. For these goals, Flash Flood Guidance (FFG) was estimated from 1-hr duration Threshold Runoff (TR) and Saturation Deficit (SD) of soil moisture which was derived from Sejong University Rainfall Runoff (SURR) model. Then, the return period of flash flood was calculated by comparing the rainfall quantile to the 1-hr duration rainfall that exceeded the FFG during the past period (2002-2010). Moreover, the appropriateness of the estimated return period of flash flood was evaluated by using the observation events from 2011 to 2016. The results of the return period of flash flood ranged from 1.1 to 19.9 years with a mean and a standard deviation of 1.6 and 1.1 years, respectively. Also, the result of the appropriateness indicated that 83% of the return periods derived from observation events were within the return period of flash flood range. Therefore, the estimated return period of flash flood could be considered as highly appropriate.

Effects of Monsoon Rainfalls on Surface Water Quality in a Mountainous Watershed under Mixed Land Use (토지이용이 다변화된 산림 유역의 수질에 미치는 몬순 강우의 영향)

  • Jo, Kyeong-Won;Lee, Hyun-Ju;Park, Ji-Hyung;Owen, Jeffrey S.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.3
    • /
    • pp.197-206
    • /
    • 2010
  • To provide baseline information essential for assessing environmental impacts of monsoon rainfalls in a mountainous watershed under mixed land use, we investigated spatiotemporal variations in water quality using a combined approach of seasonal water quality survey and intensive storm samplings. Biannual water sampling at nine locations encompassing major land use types showed generally lower electrical conductivity and Cl- concentrations during the typical wet period compared to the dry period, indicating rainfall-induced dilution of dissolved ions. Total metal concentrations, however, were significantly higher during the monsoon period, probably associated with rainfall-induced increases in suspended sediments. Intensive storm sampling during a small monsoon rainfall event (18 mm) and an extreme event (452 mm) showed rapid changes in both suspended sediments and dissolved solutes in an agricultural stream draining the Haean Basin where arable lands have expanded rapidly over the recent decades. By contrast, a nearby forest stream derived from North Korea showed little responses to the small event compared to larges changes during the extreme event. In the agricultural stream total Pb concentrations showed significant positive relationships with suspended sediments. Although limited sampling frequency and locations require a cautious interpretation, the overall results suggest that expansion of agricultural fields in steep mountainous watersheds can increase the susceptibility of soil erosion and its off-site environmental impacts under increasing rainfall variability and extremes.

A Methodology for Rain Gauge Network Evaluation Considering the Altitude of Rain Gauge (강우관측소의 설치고도를 고려한 강우관측망 평가방안)

  • Lee, Ji Ho;Jun, Hwan Don
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.113-124
    • /
    • 2014
  • The observed rainfall may be different along with the altitude of rain gauge, resulting in the fact that the characteristics of rainfall events occurred in urban or mountainous areas are different. Due to the mountainous effects, in higher altitude, the uncertainty involved in the rainfall observation gets higher so that the density of rain gauges should be more dense. Basically, a methodology for the rain gauge network evaluation, considering this altitude effect of rain gauges can account for the mountainous effects and becomes an important step for forecasting flash flood and calibrating of the radar rainfall. For this reason, in this study, we suggest a methodology for rain gauge network evaluation with consideration of the rain gauge's altitude. To explore the density of rain gauges at each level of altitude, the Equal-Altitude-Ratio of the density of rain gauges, which is based on the fixed amount of elevation and the Equal-Area-Ratio of the density of rain gauges, which is based on the fixed amount of basin area are designed. After these two methods are applied to a real watershed, it is found that the Equal-Area-Ratio generates better results for evaluation of a rain gauge network with consideration of rain gauge's altitude than the Equal-Altitude-Ratio does. In addition, for comparison between the soundness of rain gauge networks in other watersheds, the Coefficient of Variation (CV) of the rain gauge density by the Equal-Area-Ratio is served as the index for the evenness of the distribution of the rain gauge's altitude. The suggested method is applied to the five large watersheds in Korea and it is found that rain gauges installed in a watershed having less value of the CV shows more evenly distributed than the ones in a watershed having higher value of the CV.

Disaster risk predicted by the Topographic Position and Landforms Analysis of Mountainous Watersheds (산지유역의 지형위치 및 지형분석을 통한 재해 위험도 예측)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • Extreme climate phenomena are occurring around the world caused by global climate change. The heavy rains exceeds the previous record of highest rainfall. In particular, as flash floods generate heavy rainfall on the mountains over a relatively a short period of time, the likelihood of landslides increases. Gangwon region is especially suffered by landslide damages, because the most of the part is mountainous, steep, and having shallow soil. Therefore, in this study, is to predict the risk of disasters by applying topographic classification techniques and landslide risk prediction techniques to mountain watersheds. Classify the hazardous area by calculating the topographic position index (TPI) as a topographic classification technique. The SINMAP method, one of the earth rock predictors, was used to predict possible areas of a landslide. Using the SINMAP method, we predicted the area where the mountainous disaster can occur. As a result, the topographic classification technique classified more than 63% of the total watershed into open slope and upper slope. In the SINMAP analysis, about 58% of the total watershed was analyzed as a hazard area. Due to recent developments, measures to reduce mountain disasters are urgently needed. Stability measures should be established for hazard zone.

Curve Number for a Small Forested Mountainous Catchment (산지 소유역 유출곡선지수)

  • Oh, Kyoung-Doo;Jun, Byong-Ho;Han, Hyung-Geun;Jung, Sung-Won;Cho, Young-Ho;Park, Soo-Yun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.605-616
    • /
    • 2005
  • In this paper, runoff curve numbers (CN's) for a small forested mountainous catchment are estimated using rainfall-runoff data measured at Sulma experimental catchment every 10 minutes and a new guideline for applying the antecedent rainfall conditions (ARC's) for small mountainous watersheds in Korea is proposed. Sulma experimental catchment is a typical natural mountainous basin with $97\%$ of forested land cover and CN's are estimated to be in the range between 51 and 89 with median value of 72. The test hypothesis stating as 1-day ARC is better than 5-day ARC in determining CN's for a small mountainous watershed is shown to be acceptable. Also, linear regression equations for the estimation of CN's for small mountainous catchments are proposed. As there is no significant investigations available on CN's for small mountainous catchments, the newly proposed relationships between CN's and ARC may be used as a preliminary guideline to assign CN's for the estimation of floods from rainfall data on mountainous regions.