본 논문에서는 Mountain clustering 알고리즘을 이용한 Fuzzy Radial Basis Function Neural Network(FRBFNN)의 규칙 수를 자동생성 방법을 제시한다. FRBFNN은 기존 RBFNN에서 가우시안이나 타원형 형태의 특정 RBF를 사용하는 구조와 달리 클러스터의 중심값과의 거리에 기반을 둔 멤버쉽함수를 사용하여 전반부의 공간 분할 및 활성화 레벨을 결정한다. 또한 분할된 로컬영역에서의 입출력 특성을 나타내는 퍼지규칙의 후반부로서 고차 다항식을 고려하였다. 본 논문에서는 데이터의 밀집도에 기반을 두어 클러스터링을 수행하는 Mountain clustering 알고리즘을 사용하여 적합한 퍼지 규칙(클러스터)의 수와 클러스터의 중심값을 자동적으로 생성하는 방법을 제안한다. Mountain clustering으로부터 구해진 클러스터의 중심은 멤버쉽 값을 결정하는데 사용되며, Weighted Least Square Estimator (WLSE) 알고리즘을 사용하여 후반부 다항식의 계수를 추정한다. 제안된 알고리즘은 비선형 함수 모델링에 적용하여 성능의 우수성과 알고리즘의 타당성을 보인다.
We introduce an advanced mountain clustering method which uses a normalized data space, a gaussian type mountain function and a deconstruction method using mountain slope. This is more useful than Yagers mountain method because it needs just one parameter to tune instead of three and finds out more resonable cluster centers. Computational examples are presented to show the validity of the advanced mountain method.
본 논문에서는 정규화된 데이터 공간과 가우스함수에 의한 산 함수 형성 그리고 형성된 산의 기울기를 이용한 산봉우리 붕괴를 특징으로 하는 개선된 산 클러스터링 방법을 제안한다. 이 개선된 방법은 기존의 Yager 등에 의하여 제안된 방법이 조정해야 하는 매개변수가 3개이고 발견된 클러스터 중심 주위에 원치 않는 다른 중심이 발생할 수 있는데 반하여 단지 하나의 매개변수 $\omega$의 조정으로 더욱 타당한 중심을 찾아내는 점에서 유용하다 할 수 있다. 또한 매개변수 $\omega$에 대한 적절한 선정 방법을 제시하고, 수치 자료에 대한 컴퓨터 모의실험을 통하여 개선된 산 클러스터링 방법의 유용성을 입증한다.
본 논문에서는 수치적 데이터를 이용하여 규칙을 생성하는 시스템에 대해 순차적인 클러스터링 방법을 제안한다. 단일 클러스터링 기법은 방대하고 복잡한 공간 내에서는 원하는 결과를 얻지 못할 수 있다. 이런 문제점을 해결하기 위해 제안된 방법은 서로 다른 클러스터링 기법을 순차적으로 수행하여 장점들은 활용하고 단점들은 보안하는 형태를 제안하였다. Mountain 클러스터링과 Chen 클러스터링을 이용하여 non-parametric 공간에서 자율적으로 클러스터를 구성하였고, global 공간과 local 공간으로 역할을 분담하여 클러스터를 추정한다. 추정된 클러스터들은 신경회로망이나 퍼지 시스템과 같은 지능 시스템의 구조와 초기 파라미터 결정에 활용될 수 있으며, 확장하여 헬스케어와 의료 분야에서의 결정 제공 시스템의 학습에 도움을 줄 수 있다. 제안된 방법을 유용성을 시뮬레이션을 통해 보이고자 한다.
본 논문에서는 전형적인 비선형 회귀문제를 다루기 위해 슈뢰딩거 방정식에 의해 표현되는 Hilbert공간에서 수행되는 Quantum 클러스터링과 Mountain 함수를 이용하여, 수치적인 입출력데이터로부터 TSK 형태의 자동적인 퍼지 if-then 규칙의 생성방법을 제안한다. 여기서 슈뢰딩거 방정식은 분석적으로 확률함수로부터 유도되어질 수 있는 포텐셜 함수를 포함한다. 이 포텐셜의 최소점들은 데이터의 특성을 포함하는 클러스터 중심들과 관련되어진다. 그러나 이들 클러스터 중심들은 데이터의 수와 같으므로 퍼지 규칙을 생성하기 어려울 뿐만 아니라 수렴속도가 느린 문제점을 가지고 있다. 이러한 문제점들을 해결하기 위해서, 본 논문에서는 밀도 척도에 기초한 클러스터 중심의 근사적인 추정에 대해 간단하면서 효과적인 Mountain 함수를 이용하여 효과적인 클러스터 중심을 얻음과 동시에 적응 뉴로-퍼지 네트워크의 자동적인 퍼지 규칙을 생성하도록 한다. 자동차 MPG 예측문제에 대한 시뮬레이션 결과는 제안된 방법이 기존 문헌에서 제시한 예측성능보다 더 좋은 특성을 보임을 알 수 있었다.
This paper proposes an adaptive reclosing scheme which is based on the classification of fault patterns. In case that the first reclosing is unsuccessful in distribution system employing with two-shot reclosing scheme, the proposed method can determine whether the second reclosing will be attempted of not. If the first reclosing is unsuccessful two fault currents can be measured before the second reclosing is attempted, where these two fault currents are utilized for an adaptive reclosing scheme. Total harmonic distortion and RMS are used for extracting the characteristics of two fault currents. And the pattern of two fault currents is respectively classified using a mountain clustering method a minimum-distance classifier. Mountain clustering method searches the cluster centers using the acquired past data. And minimum-distance classifier is used for classifying the measured two currents into one of the searched centers respectively. If two currents have the different pattern it is interpreted as temporary fault. But in case of the same pattern, the occurred fault is interpreted as permanent. The proposed method was tested for the fault data which had been measured in KEPCO's distribution system, and the test results can demonstrate the effectiveness of the adaptive reclosing scheme.
클러스터링은 주어진 임의의 데이터 중에서 유사한 성질을 지닌 데이터를 복수개의 그룹으로 조직화하는 기법이다. 이를 위해 K-Means, Fuzzy C-Means(FCM), Mountain Method(MM) 등과 같은 많은 기법들이 제안되었고 또한 널리 사용되어지고 있다. 그러나 이러한 기법들은 초기값에 따라 클러스터링 결과가 크게 달라지는 단점이 있다. 특히 가장 널리 사용되는 FCM 기법은 잡음 데이터에 취약하며, 주어진 입력 데이터의 클러스터 내부분산을 최소화 하는 방법을 사용하기 때문에 클러스터링 중심의 왜곡 현상이 발생한다. 본 논문에서는 데이터 가중치에 근거한 비례적 근접데이터 병합을 통하여 클러스터 중심 왜곡을 저감하며 초기값에 영향을 받지 않는 클러스터링 기법을 제안한다. 그리고 FCM으로 얻어진 클러스터 중심과 제안기법을 적용하여 얻어진 클러스터 중심에 대한 비교 검토를 통하여 제안기법의 효용성을 확인한다.
한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
/
pp.453-458
/
1998
In this paper, a new approach to modeling of nonlinear systems using fuzzy theory is presented. So as to handle a variety of nonlinearity and reflect the degree of confidence in the informations about system, we combine multiple model method with hierarchical prioritized structure. The mountain clustering technique is used in partition of system, and TSK rule structure is adopted to form the fuzzy rules. Back propagation algorithm is used for learning parameters in the rules. Computer simulations are performed to verify the effectiveness of the proposed method. It is useful for the treatment fo the nonlinear system of which the quantitative math-approach is difficult.
G-K 클러스터링이 가지는 우수한 클러스터 분류 성능에도 불구하고 데이터의 편중 및 분포 밀도에 의하여 클러스터링의 결과과 만족스럽지 못하는 경우가 발생한다. 제안된 방법에서는, G-K 클러스터링에서 데이터의 분포 및 밀도 등과 같은 다양한 조건에 대한 문제를 동시에 고려함으로써 클러스터링 결과를 개선한다. G-K 클러스터링에서 일부 파라미터의 수동적 파라미터 결정 방법을 Mountain 방법을 이용하여 능동적인 알고리즘으로 대치하여 클러스터 최적화 과정을 더욱 용이하게 한다. 이러한 클러스터링의 장점은 뉴로-퍼지 모델의 규칙 감소와 성능개선으로 나타나며 이를 시뮬레이션을 통하여 보이고자 한다.
Using the principal component analysis and clustering Forest resources are consistently necessary in the future. It takes much time to produce and breed them. However it is difficult to do due to recent social situation. Considering global environment, forest policy should be considered as a global scale rather than a regional one. At least, the policy needs a national scale concern. In order to support forestry, elementary data are needed. In this study, forest characteristics in Ishigawa-gen province have been analyzed through main component analysis and clustering. The results are shown in fig.5 and fig.6.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.