• 제목/요약/키워드: Mountain clustering

검색결과 32건 처리시간 0.026초

Mountain Clustering 기반 퍼지 RBF 뉴럴네트워크의 동정 (Identification of Fuzzy-Radial Basis Function Neural Network Based on Mountain Clustering)

  • 최정내;오성권;김현기
    • 한국정보전자통신기술학회논문지
    • /
    • 제1권3호
    • /
    • pp.69-76
    • /
    • 2008
  • 본 논문에서는 Mountain clustering 알고리즘을 이용한 Fuzzy Radial Basis Function Neural Network(FRBFNN)의 규칙 수를 자동생성 방법을 제시한다. FRBFNN은 기존 RBFNN에서 가우시안이나 타원형 형태의 특정 RBF를 사용하는 구조와 달리 클러스터의 중심값과의 거리에 기반을 둔 멤버쉽함수를 사용하여 전반부의 공간 분할 및 활성화 레벨을 결정한다. 또한 분할된 로컬영역에서의 입출력 특성을 나타내는 퍼지규칙의 후반부로서 고차 다항식을 고려하였다. 본 논문에서는 데이터의 밀집도에 기반을 두어 클러스터링을 수행하는 Mountain clustering 알고리즘을 사용하여 적합한 퍼지 규칙(클러스터)의 수와 클러스터의 중심값을 자동적으로 생성하는 방법을 제안한다. Mountain clustering으로부터 구해진 클러스터의 중심은 멤버쉽 값을 결정하는데 사용되며, Weighted Least Square Estimator (WLSE) 알고리즘을 사용하여 후반부 다항식의 계수를 추정한다. 제안된 알고리즘은 비선형 함수 모델링에 적용하여 성능의 우수성과 알고리즘의 타당성을 보인다.

  • PDF

개선된 산 클러스터링 방법 (Advanced Mountain Clustering Method)

  • 이중우;권순학;손세호
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.121-124
    • /
    • 2000
  • We introduce an advanced mountain clustering method which uses a normalized data space, a gaussian type mountain function and a deconstruction method using mountain slope. This is more useful than Yagers mountain method because it needs just one parameter to tune instead of three and finds out more resonable cluster centers. Computational examples are presented to show the validity of the advanced mountain method.

  • PDF

개선된 산 클러스터링 방법 (Advanced Mountain Clustering Method)

  • 이중우;손세호;권순학
    • 한국지능시스템학회논문지
    • /
    • 제11권1호
    • /
    • pp.1-8
    • /
    • 2001
  • 본 논문에서는 정규화된 데이터 공간과 가우스함수에 의한 산 함수 형성 그리고 형성된 산의 기울기를 이용한 산봉우리 붕괴를 특징으로 하는 개선된 산 클러스터링 방법을 제안한다. 이 개선된 방법은 기존의 Yager 등에 의하여 제안된 방법이 조정해야 하는 매개변수가 3개이고 발견된 클러스터 중심 주위에 원치 않는 다른 중심이 발생할 수 있는데 반하여 단지 하나의 매개변수 $\omega$의 조정으로 더욱 타당한 중심을 찾아내는 점에서 유용하다 할 수 있다. 또한 매개변수 $\omega$에 대한 적절한 선정 방법을 제시하고, 수치 자료에 대한 컴퓨터 모의실험을 통하여 개선된 산 클러스터링 방법의 유용성을 입증한다.

  • PDF

규칙 생성 시스템을 위한 새로운 연속 클러스터링 조합 (New Sequential Clustering Combination for Rule Generation System)

  • 김승석;최호진
    • 인터넷정보학회논문지
    • /
    • 제13권5호
    • /
    • pp.1-8
    • /
    • 2012
  • 본 논문에서는 수치적 데이터를 이용하여 규칙을 생성하는 시스템에 대해 순차적인 클러스터링 방법을 제안한다. 단일 클러스터링 기법은 방대하고 복잡한 공간 내에서는 원하는 결과를 얻지 못할 수 있다. 이런 문제점을 해결하기 위해 제안된 방법은 서로 다른 클러스터링 기법을 순차적으로 수행하여 장점들은 활용하고 단점들은 보안하는 형태를 제안하였다. Mountain 클러스터링과 Chen 클러스터링을 이용하여 non-parametric 공간에서 자율적으로 클러스터를 구성하였고, global 공간과 local 공간으로 역할을 분담하여 클러스터를 추정한다. 추정된 클러스터들은 신경회로망이나 퍼지 시스템과 같은 지능 시스템의 구조와 초기 파라미터 결정에 활용될 수 있으며, 확장하여 헬스케어와 의료 분야에서의 결정 제공 시스템의 학습에 도움을 줄 수 있다. 제안된 방법을 유용성을 시뮬레이션을 통해 보이고자 한다.

개선된 Quantum 클러스터링을 이용한 자동적인 퍼지규칙 생성 및 비선형 회귀로의 응용 (An Automatic Fuzzy Rule Extraction using an Advanced Quantum Clustering and It's Application to Nonlinear Regression)

  • 김승석;곽근창
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.182-183
    • /
    • 2007
  • 본 논문에서는 전형적인 비선형 회귀문제를 다루기 위해 슈뢰딩거 방정식에 의해 표현되는 Hilbert공간에서 수행되는 Quantum 클러스터링과 Mountain 함수를 이용하여, 수치적인 입출력데이터로부터 TSK 형태의 자동적인 퍼지 if-then 규칙의 생성방법을 제안한다. 여기서 슈뢰딩거 방정식은 분석적으로 확률함수로부터 유도되어질 수 있는 포텐셜 함수를 포함한다. 이 포텐셜의 최소점들은 데이터의 특성을 포함하는 클러스터 중심들과 관련되어진다. 그러나 이들 클러스터 중심들은 데이터의 수와 같으므로 퍼지 규칙을 생성하기 어려울 뿐만 아니라 수렴속도가 느린 문제점을 가지고 있다. 이러한 문제점들을 해결하기 위해서, 본 논문에서는 밀도 척도에 기초한 클러스터 중심의 근사적인 추정에 대해 간단하면서 효과적인 Mountain 함수를 이용하여 효과적인 클러스터 중심을 얻음과 동시에 적응 뉴로-퍼지 네트워크의 자동적인 퍼지 규칙을 생성하도록 한다. 자동차 MPG 예측문제에 대한 시뮬레이션 결과는 제안된 방법이 기존 문헌에서 제시한 예측성능보다 더 좋은 특성을 보임을 알 수 있었다.

  • PDF

사고 패턴 분류에 기초한 배전계통의 적응 재폐로방식 (An Adaptive Reclosing Scheme Based on the Classification of Fault Patterns in Power distribution System)

  • 오정환;김재철;윤상윤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권3호
    • /
    • pp.112-119
    • /
    • 2001
  • This paper proposes an adaptive reclosing scheme which is based on the classification of fault patterns. In case that the first reclosing is unsuccessful in distribution system employing with two-shot reclosing scheme, the proposed method can determine whether the second reclosing will be attempted of not. If the first reclosing is unsuccessful two fault currents can be measured before the second reclosing is attempted, where these two fault currents are utilized for an adaptive reclosing scheme. Total harmonic distortion and RMS are used for extracting the characteristics of two fault currents. And the pattern of two fault currents is respectively classified using a mountain clustering method a minimum-distance classifier. Mountain clustering method searches the cluster centers using the acquired past data. And minimum-distance classifier is used for classifying the measured two currents into one of the searched centers respectively. If two currents have the different pattern it is interpreted as temporary fault. But in case of the same pattern, the occurred fault is interpreted as permanent. The proposed method was tested for the fault data which had been measured in KEPCO's distribution system, and the test results can demonstrate the effectiveness of the adaptive reclosing scheme.

  • PDF

클러스터 중심 왜곡 저감을 위한 클러스터링 기법 (Clustering Method for Reduction of Cluster Center Distortion)

  • 정혜천;서석태;이인근;권순학
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.354-359
    • /
    • 2008
  • 클러스터링은 주어진 임의의 데이터 중에서 유사한 성질을 지닌 데이터를 복수개의 그룹으로 조직화하는 기법이다. 이를 위해 K-Means, Fuzzy C-Means(FCM), Mountain Method(MM) 등과 같은 많은 기법들이 제안되었고 또한 널리 사용되어지고 있다. 그러나 이러한 기법들은 초기값에 따라 클러스터링 결과가 크게 달라지는 단점이 있다. 특히 가장 널리 사용되는 FCM 기법은 잡음 데이터에 취약하며, 주어진 입력 데이터의 클러스터 내부분산을 최소화 하는 방법을 사용하기 때문에 클러스터링 중심의 왜곡 현상이 발생한다. 본 논문에서는 데이터 가중치에 근거한 비례적 근접데이터 병합을 통하여 클러스터 중심 왜곡을 저감하며 초기값에 영향을 받지 않는 클러스터링 기법을 제안한다. 그리고 FCM으로 얻어진 클러스터 중심과 제안기법을 적용하여 얻어진 클러스터 중심에 대한 비교 검토를 통하여 제안기법의 효용성을 확인한다.

A Multiple Model Approach to Fuzzy Modeling and Control of Nonlinear Systems

  • Lee, Chul-Heui;Seo, Seon-Hak;Ha, Young-Ki
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.453-458
    • /
    • 1998
  • In this paper, a new approach to modeling of nonlinear systems using fuzzy theory is presented. So as to handle a variety of nonlinearity and reflect the degree of confidence in the informations about system, we combine multiple model method with hierarchical prioritized structure. The mountain clustering technique is used in partition of system, and TSK rule structure is adopted to form the fuzzy rules. Back propagation algorithm is used for learning parameters in the rules. Computer simulations are performed to verify the effectiveness of the proposed method. It is useful for the treatment fo the nonlinear system of which the quantitative math-approach is difficult.

  • PDF

변형된 Mountain 방법을 이용한 G-K 클러스터링 성능 개선 (Improving the G-K Clustering Performance using the Modified Mountain Method)

  • 김승석;전병석;김주식;유정웅;이진국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2546-2548
    • /
    • 2003
  • G-K 클러스터링이 가지는 우수한 클러스터 분류 성능에도 불구하고 데이터의 편중 및 분포 밀도에 의하여 클러스터링의 결과과 만족스럽지 못하는 경우가 발생한다. 제안된 방법에서는, G-K 클러스터링에서 데이터의 분포 및 밀도 등과 같은 다양한 조건에 대한 문제를 동시에 고려함으로써 클러스터링 결과를 개선한다. G-K 클러스터링에서 일부 파라미터의 수동적 파라미터 결정 방법을 Mountain 방법을 이용하여 능동적인 알고리즘으로 대치하여 클러스터 최적화 과정을 더욱 용이하게 한다. 이러한 클러스터링의 장점은 뉴로-퍼지 모델의 규칙 감소와 성능개선으로 나타나며 이를 시뮬레이션을 통하여 보이고자 한다.

  • PDF

산촌 활성화를 위한 산림권역의 경영단위분석 - 일본 이시가와현의 예를 중심으로 - (Analysis of Management Unit on Forest Area for Active Mountain Villages - Case of Ishigawa-gen in Japan -)

  • 이성기;손석규;정진현;신병철;정영교
    • 한국환경과학회지
    • /
    • 제15권10호
    • /
    • pp.989-995
    • /
    • 2006
  • Using the principal component analysis and clustering Forest resources are consistently necessary in the future. It takes much time to produce and breed them. However it is difficult to do due to recent social situation. Considering global environment, forest policy should be considered as a global scale rather than a regional one. At least, the policy needs a national scale concern. In order to support forestry, elementary data are needed. In this study, forest characteristics in Ishigawa-gen province have been analyzed through main component analysis and clustering. The results are shown in fig.5 and fig.6.