• 제목/요약/키워드: Motor vibration

검색결과 1,348건 처리시간 0.025초

공기 포일 베어링을 사용하는 300마력급 터보송풍기 개발 (Development of a 300 HP Class Turbo Blower with Air Foil Bearings)

  • 김경수;이기호;박기철;이시우;김승우
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.331-334
    • /
    • 2006
  • Air foil bearings have been attempted for application to industrial turbo machines, since they have several advantages over oil bearings in terms of endurance, simplicity, environment-friendliness, efficiency, sound and vibration, and small turbo machines with air foil bearings are in the market as the result. Recently, researches on widening the application spectrum of air foil bearings are in progress worldwide. In this paper, a 300 HP class turbo blower using air foil bearings is introduced. The turbo blower has a high speed PMSM(Permanent Magnet Synchronous Motor) driving a compressor, and air flow rate is designed to be $180\;m^3/min$ at pressure ratio of 1.6. The maximum rotational speed is set to 17,000 RPM to maximize the total efficiency with the result that the weight of rotor assembly is 26kg, which is expected to be the largest turbo machine with air foil bearings ever developed in the world.

  • PDF

적응 Feedforward를 이용한 자기베어링 고속 주축계의 전기적 런아웃 제어 (Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method)

  • 노승국;경진호;박종권
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.57-63
    • /
    • 2002
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensor fur control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking and stability performances numerically with established frequency response function. The tested grinding spindle system is manufactured with a 5.5 ㎾ internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15 ~ 30 ${\mu}{\textrm}{m}$ of electrical runout. According to the experimental analysis, the error signal in radial bearings is reduced to less than 5 ${\mu}{\textrm}{m}$ when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and vibration of the spindle base is also reduced about same frequency.

Two Head Vacuum Pump를 이용한 차랑용 산소 발생기 개발 (Development of Oxygen Generator for Vehicle with Two Head Vaccum Pump)

  • 주남규;백규열;차진석;이준배;김남호
    • 조명전기설비학회논문지
    • /
    • 제18권3호
    • /
    • pp.114-119
    • /
    • 2004
  • 차량이라는 특수한 장소에 적용되는 산소 발생 장치는 소형/경량화 및 소음, 충격, 발열에 대한 문제점을 무시할 수 없다. 이러한 문제점을 해결할 방법으로 BLDC를 이용하여 모터의 발열을 줄이고 합성 제올라이트 NaX형을 사용한 베드로 소형에서도 고농도의 산소를 발생시킬 수 있게 하였다. 또한, 합성 제올라이트 NaX형의 특성으로 인한 질소의 강제 탈착을 진공펌프 한 대로 사용하기 위하여 Two Head 진공펌프 Pump Type을 개발하여 소비 전력을 줄이고 소형/경량화 및 저소음, 충격/발열 문제를 해결할 수 있었다.

생체 모방 로봇을 이용한 관로 모니터링 시스템의 구현 (Implementation of Pipeline Monitoring System Using Bio-memetic Robots)

  • 신대정;나승유;김진영;정주현
    • 정보처리학회논문지A
    • /
    • 제17A권1호
    • /
    • pp.33-44
    • /
    • 2010
  • 본 논문에서는 생체 모방 로봇을 이용한 관로 모니터링 시스템에 대하여 제안한다. 생체 모방 로봇은 관로를 이동하며 온도, 습도, 진동 등 다양한 정보를 획득한다. 관로를 이동하기 위하여 기본적으로 갖추어야 할 기능은 로봇이 이동하여야 할 관로의 형태를 인식하는 것이다. 관로의 형태 인식을 위한 센서로 적외선 거리 측정 센서를 사용하며, 모터에 연결된 센서는 회전 운동을 하며 측정된 각도 및 거리 정보 데이터를 이용하여 관로의 형태, 각도 등을 인식한다. 관로의 형태 인식은 모터에 의해 회전 운동하는 적외선 거리 측정 센서에 의해 감지되는 관로의 개수와 위치에 의한다. 한번 스캔된 데이터에서 감지되는 관로의 수에 따라 별도의 퍼지 분류기를 이용하여 형태 및 관로의 휘어진 각도 등을 추정하며, 다양한 형태의 관로에 대해 실제 측정된 데이터를 통하여 제안된 시스템이 효율적임을 확인한다.

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method

  • Ro Seung-Kook;Kyung Jin-Ho;Park Jong-Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.19-25
    • /
    • 2005
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensors for control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking performances and stability numerically with established frequency response function. The designed feedforward controller was applied to a grinding spindle system which is manufactured with a 5.5 kW internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15∼30㎛ of electrical runout. According to the experimental results, the error signal in radial bearings is reduced to less than 5 ,Urn when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and corresponding vibration of the spindle is also removed.

PID 제어기를 이용한 회전전동장치의 동특성에 관한 연구 (A Study on Dynamic Characteristics of Rotating Transmission Using PID Control)

  • 김재경;김종태;김택현
    • 한국공작기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.41-48
    • /
    • 2005
  • The Rotating transmission is made up of belts, mass disks and gears. This transmission is controlled electro-mechanically by the motor and operation program. The control strategy of the system can be to change belts' stiffness and the masses of mass disk and gear. This system can be modeled as a rigid body, and also finds broad application in such diverse fields as machine tools, the cruise control system In automobiles, and control in the attitude and gimbals of spacecraft. This Transmission proves the necessity and effect of a closed loop control. The study of the Rotating Transmission excited by its base motion is able not only to predict the rotational performance, but to obtain the fundamental data for vibration isolation. In this research, we compared the response characteristics of the two controllers by means of the experiments on PD controller and PID controller added on integral action. Furthermore, we studied the response abilities such as steady state error, overshoot, and ect. and the response velocities such as rising time, settling time, and ect. in the rotating transmission.

핵연료봉 프레팅마멸 시험기 개발 (Development of Fuel Rod Fretting Wear Tester)

  • 김형규;하재욱;윤경호;강흥석;송기남
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.245-251
    • /
    • 2001
  • A fretting wear tester is developed for experimental study on the fuel fretting problem of light water reactor. The feature of the developed tester is it can simulate the existence of gap between spring and fuel rod as well as different contacting force including the just-contact condition (0 N on the contact). Used are a servo-motor, an eccentric cylinder and lever mechanism for driving system. A spacer grid cell is constituted with four strap segments (each segment has a spring). This fretting wear tester can also be used as a fatigue tester of a spacer grid spring with the frequency of more than 10 Hz. It is required to simulate the frequency of the vibrating fuel rod due to flow-induced vibration in a reactor. In fretting wear test, up to two span-length of a fuel cladding tube can be accommodated. A specimen of cladding tube of one span-length is specially designed, which can be extended for two-span test. For .fatigue test, a device for clamping the spring fixture is installed additionally, Presently, the tester is designed for the condition of air environment and room temperature. The variation of the reciprocal distance is measured to check the stability of input force, which will be exerted to the cladding (for fretting wear. test) and the spring (for fatigue test) specimen.

  • PDF

다분야 설계 제약 조건을 고려한 알루미늄 스페이스 프레임 차체의 최적 설계 (Aluminum Space Frame B.I.W. Optimization Considering Multidisciplinary Design Constraints)

  • 김범진;김민수;허승진
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.1-7
    • /
    • 2006
  • This paper presents an ASF (Aluminum Space Frame) BIW optimal design, which minimizes the weight and satisfies multi-disciplinary constraints such as the static stiffness, vibration characteristics, low-speed crash, high-speed crash and occupant protection. As only one cycle CPU time for all the analyses is 12 hours, the ASF design having 11-design variable is a large scaled problem. In this study, ISCD-II and conservative least square fitting method is used for efficient RSM modeling. Then, ALM method is used to solve the approximate optimization problem. The approximate optimum is sequentially added to remodel the RSM. The proposed optimization method used only 20 analyses to solve the 11-design variable design problem. Also, the optimal design can reduce the] $15\%$ of total weight while satisfying all of the multi-disciplinary design constraints.

공정 자동화를 위한 싱글 휠 드라이빙 모바일 로봇의 견실제어에 관한 연구 (A Study on Robust Control of Mobile Robot with Single wheel Driving Robot for Process Automation)

  • 신행봉;차보남
    • 한국산업융합학회 논문집
    • /
    • 제19권2호
    • /
    • pp.81-87
    • /
    • 2016
  • This paper presents a new approach to control of stable motion of single wheel driving robot system of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel. This robot doesn'thave any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Lagrange equations was applied to derive the dynamic equations of the one wheel driving robot to implement the dynamic speed control of the mobile robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and optical regulator are utilized to prove the reliability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based robust controller has been adopted to reduce the vibration by the situation function. The optimal controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the driving wheel. The control performance of the control systems from a single dynamic model has been illustrated by the real experiments.