• 제목/요약/키워드: Motor vibration

검색결과 1,352건 처리시간 0.025초

연료펌프 모터의 진동품질관리 자동화 (Automatic Quality Control of Fuel Pump Motor Using Vibration Analysis)

  • 이종광;박병석;윤지섭;강이석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.303-304
    • /
    • 2006
  • In this work, we developed an equipment for automatic quality control of fuel pump motor using vibration analysis. The equipment automatically performs a series of tasks such as aligning and conveying the motor, attachment/detachment of an accelerometer, data acquisition, vibration analysis, and classification, etc. Compared to previous manual operations, the developed system is able to provide considerable savings in both time and cost.

  • PDF

200 kW급 15,000 rpm 3상 유도전동기의 회전축 진동해석 (Rotating Shaft Vibration Analysis of 200 kW, 15,000 rpm 3 Phase Induction Motor)

  • 홍도관;구대현;우병철;홍승수;권용수;강헌찬;안찬우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.262-265
    • /
    • 2006
  • The purpose of this study is to design 200 kW, 15,000 rpm 3 phase induction motor. This research deals with natural frequency and mode shape of rotating shaft of 3 phase induction motor with bearing stiffness by finite element analysis. We present natural frequency characteristic variation of rotating shaft according to change bearing stiffness. Also we are verified stability of rotating shaft from backward and forward critical speed by campbell diagram.

  • PDF

유도전동기의 편심에 의한 회전자 진동해석 (Analysis of Rotor Vibration by Eccentric in the Induction Motor)

  • 황돈하;이주훈;강동식;김용주;최경호;이진희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1201-1203
    • /
    • 2005
  • This paper presents results of the finite-element(FE) analysis and experiment of air-gap flux variation in induction motor when rotor eccentricity vibration conditions occur. An accurate modeling and analysis of rotor vibration in the machine are developed using commercial FE analysis tool and search coils are used for measuring the actual air-gap flux. In the FE analysis and experiment, the induction motor with 380[V], 5[HP], 4r, 1742[rpm] ratings is used. The simulation and experimental results can be useful for rotor vibration monitoring of the induction motor.

  • PDF

발전소 입형펌프 전동기의 전류/진동신호 특성 분석 (Analysis of Current/Vibration Characteristics for Vertical Pump Induction Motors in Power Plant)

  • 김연환;이두영;구재량;배용채;이현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.400-405
    • /
    • 2005
  • The diagnosis of mechanical load and of power transmission system failures is usually carried out through mechanical signals such as vibration signals, acoustic emissions, motor speed envelope. If the mechanical load comes from an electrical machine the mechanical failures could be detected previously. Mechanical rotor imbalances and rotor eccentricities are reflected in electric, electromagnetic and mechanical quantities. Therefore, many surveillance schemes apply to the Fourier spectrum of a line current in order to monitor the motor condition. Due to the interaction of the currents and voltages, both these current harmonics are also reflected by a single harmonic component in the frequency spectrum of the electric power. Motor Current Signature Analysis is the usuful technique to assess machine electrical condition.

  • PDF

Electromagnetic and Vibration Analysis of E-core Switched Reluctance Motor with Permanent Magnets and Auxiliary Windings

  • Saranya, S.;Balaji, M.
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.540-548
    • /
    • 2019
  • In this work a new configuration of E-core stator Switched Reluctance Motor (SRM) with permanent magnets and auxiliary windings embedded in the stator yoke is proposed. For the proposed configuration of SRM electromagnetic analysis is performed using Finite Element Analysis (FEA) based computer aided design package MagNet and to emphasize its merits a comparison is drawn with existing hybrid excitation configuration of SRM. In addition, the vibration characteristics of the motor are analyzed by performing modal and transient analysis using the ANSYS package. Results of the analysis reveals that the proposed configuration of SRM exhibits better electromagnetic and vibration characteristics and is capable of competing with the existing topologies in the variable speed market.

진공청소기 팬 모터의 진동 및 소음원인 분석을 위한 유동해석 (The Flow Analysis for Vibration and Noise Diagnostic of Vacuum Cleaner Fan Motor)

  • 김재열;곽이구;안재신;양동조;송경석;박기형
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.56-63
    • /
    • 2004
  • Recently technology resulted in highly efficient and multiple-functional electric appliances considering environmental problems. One of the environmental problems is noise of a product in respect to its function. A vacuum cleaner is an essential electric appliance in our daily lives. However, severe noise resulted from high motor speed for improving the function of the appliance is a nuisance for the user. This noise is caused by vibration from various parts of the appliance and fluid noise during a series of intake and exhaust processes while rotating the impeller connected to the axle at a high speed of the fan motor inside the vacuum cleaner rotating around 30,000-35,000rpm. Despite the fact that many researchers conducted studies on reducing the noise level of the fan motor in a vacuum cleaner, only few studies have been conducted considering both the theoretical and experimental aspects using fluid analysis by measuring vibration and noise. Moreover, there has not been a study that accurately compared major noise data obtained considering both of the aspects. In this study, both aspects were considered by considering the following experimental and theoretical methods to verify the major causes of noise from the fan motor in a vacuum cleaner.

3차원 레이저 진동 측정기를 이용한 초고속 진공청소기 모터의 진동특성분석 (The Analysis of Vibration characteristics for Vacuum Cleaner Fan Motor Using 3-D Laser Vibrator)

  • 김재열;김우진;심재기;김영석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.399-405
    • /
    • 2004
  • Recently technology resulted in highly efficient and multiple-functional electric appliances considering environmental problems. One of the environmental problems is noise of a product in respect to its function. A vacuum cleaner is an essential electric appliance in our daily lives. However, severe noise resulted from high motor speed for improving the function of the appliance is a nuisance for the user. This noise is caused by vibration from various parts of the appliance and fluid noise during a series of intake and exhaust processes while rotating the impeller connected to the axle at a high speed of the fan motor inside the vacuum cleaner rotating around 30,000-35,000 rpm. Despite the fact that many researchers conducted studies on reducing the noise level of the fan motor in a vacuum cleaner, only few studies have been conducted considering both the theoretical and experimental aspects using fluid analysis by measuring vibration and noise. Moreover, there has not been a study that accurately compared major noise data obtained considering both of the aspects. In this study, both aspects were considered by considering the following experimental and theoretical methods to verify the major causes of noise from the fan motor in a vacuum cleaner.

  • PDF

대형 고속프레스의 유한요소해석을 통한 진동 및 소음에 대한 연구 (A Study on Vibration and Noise through Finite Element Analysis of Large High Speed Press)

  • 김승수;정철재;이춘규
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.14-23
    • /
    • 2023
  • The electric vehicle market is developing rapidly around the world. Also, parts of electric vehicles require precision.In order to produce high-precision motor cores,Press equipment must also have good precision. Drive motor cores are an important technology for electric vehicles. It uses a large high-speed press to mass-produce drive motor cores. Because it's a large high-speed press, there are many reasons why the precision is not good. One of the causes is vibration and noise. Recently, as environmental demands have become stricter, regulations on noise and vibration have been strengthened. It is important for press machines to reduce vibration first for sound insulation and dust proofing. This is because the "breakthrough" phenomenon occurs in the press. Dynamic precision is the precision under the load of the press, Design considering strain and stiffness shall be made. Vibration and noise may occur due to SPM of high-speed press,And vibration and noise can cause structural deformation of the press. Structural deformation of the press can affect the precision of the product.Noise and vibration also cause problems for workers and work environments. Problems with vibration and noise occur during press processing, and vibration and noise lead to damage to the mold or defects in the product. Reliability in high-quality technology must be secured with low noise and low vibration during press processing. Modular shape and deformation energy effects were analyzed through finite element analysis. In this study, a study on vibration and noise countermeasures was conducted through finite element analysis of a large high-speed press.

극수/슬롯수 조합에 따른 Radial Vibration Force 고려한 매입자석 동기모터 특성 연구 (Study on Machine Characteristics in Interior Permanent Magnet Synchronous Motor According to Pole/Slot Combinations with Radial Vibration Force Consideration)

  • 방량;이수진;이병화;홍정표
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.949-954
    • /
    • 2011
  • This paper presents a comparative study on motor characteristics with specific consideration of radial vibration force in interior permanent magnet synchronous motors (IPMSM) according to pole/slot combinations. Three IPMSM models, 16-pole/15-slot design, 16-pole/18-slot design and 16-pole/24-slot design are built, in which 16-pole/15-slot and 16-pole/18-slot designs provide high winding factor and 16-pole/24-slot design is known as a general pole/slot combination. By coupling finite element analysis (FEA) with equivalent circuit method, motor characteristics, back electro-motive force (Back-EMF), inductances, cogging torque, etc. as well as machine output performances are analyzed and compared. The radial vibration force (RVF) distribution in air gap causing stator vibration and noise is interested. It is expected that this study help with appropriate choice of pole/slot combination in IPMSM design.