Browse > Article
http://dx.doi.org/10.6113/JPE.2019.19.2.540

Electromagnetic and Vibration Analysis of E-core Switched Reluctance Motor with Permanent Magnets and Auxiliary Windings  

Saranya, S. (Department of Electrical and Electronics Engineering, SSN College of Engineering)
Balaji, M. (Department of Electrical and Electronics Engineering, SSN College of Engineering)
Publication Information
Journal of Power Electronics / v.19, no.2, 2019 , pp. 540-548 More about this Journal
Abstract
In this work a new configuration of E-core stator Switched Reluctance Motor (SRM) with permanent magnets and auxiliary windings embedded in the stator yoke is proposed. For the proposed configuration of SRM electromagnetic analysis is performed using Finite Element Analysis (FEA) based computer aided design package MagNet and to emphasize its merits a comparison is drawn with existing hybrid excitation configuration of SRM. In addition, the vibration characteristics of the motor are analyzed by performing modal and transient analysis using the ANSYS package. Results of the analysis reveals that the proposed configuration of SRM exhibits better electromagnetic and vibration characteristics and is capable of competing with the existing topologies in the variable speed market.
Keywords
E-core stator; Finite element analysis; Hybrid excitation; Switched reluctance motor; Vibration analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 W. Cai, P. Pillay, Z. Tang, and A. M. Omekanda, “Lowvibration design of switched reluctance motors for automotive applications using modal analysis,” IEEE Trans. Ind. Appl., Vol. 39, No. 4, pp. 971-977, Aug. 2003.   DOI
2 J.-H. Lee, Y.-H. Lee, D.-H. Kim, K.-S. Lee, and I.-H. Park, “Dynamic vibration analysis of switched reluctance motor using magnetic charge force density and mechanical analysis,” IEEE Trans. Appl. Supercond., Vol. 12, No. 1, pp. 1511-1514, Mar. 2002.   DOI
3 K. N. Srinivas and R. Arumugam, “Static and dynamic vibration analyses of switched reluctance motors including bearings, housing, rotor dynamics, and applied loads,” IEEE Trans. Magn., Vol. 40, No. 4, pp. 1911-1919, Jul. 2004.   DOI
4 P. Pillay and W. Cai, “An investigation into vibration in Switched reluctance Motors,” IEEE Trans. Ind. Appl., Vol. 32, No. 4, pp. 589-596, May 1999.   DOI
5 H. Cheng, H. Chen, S. Xu, and S. Yang, “Adaptive variable angle control in Switched Reluctance Motor Drives for Electric Vehicle applications,” J. Power Electron., Vol. 17, No. 6, pp. 1512-1522, Nov. 2017.   DOI
6 H. Zeng, Z. Chen, and H. Chen, “Smooth torque speed characteristics of switched reluctance motor,” J. Power Electron., Vol. 14, No. 2, pp. 341-350, Mar. 2014.   DOI
7 G. Bhuvaneswari, S. G. Thakurta, P. S. Rao, and S. S. Murthy, “Modeling of switched reluctance motor in sensorless and with sensor modes,” J. Power Electron., Vol. 6, No. 4, pp. 315-321, Oct. 2006.
8 Y. Liao, F. Liang, and T. A. Lipo, “A novel Permanent Magnet motor with Doubly salient structure,” IEEE Trans. Ind. Appl., Vol. 31, No. 5, pp. 1069-1078, Sep. 1995.   DOI
9 S.-G. Oh and R. Krishnan, "Two-phase SRM with fluxreversal-free stator: concept, analysis, design, and experimental verification," IEEE Trans. Ind. Appl., Vol. 43, No.5, pp. 1247-1257, Oct. 2007.   DOI
10 S.-H. Mao and M.-C. Tsai, "A novel switched reluctance motor with C core stator," IEEE Trans. Magn.,Vol. 41, No.12, pp:4413-4420,Dec. 2005.   DOI
11 C. Lee, R. Krishnan, and N. S. Lobo, “Novel two-phase switched reluctance machine using common-pole e-core structure: Concept, analysis, and experimental verification,” IEEE Trans. Ind. Electron., Vol. 45, No. 2, pp. 703-711, Apr. 2009.
12 T. H. Kim, “A study on the design of an inset-permanentmagnet-type flux-reversal machine,” IEEE Trans. Magn., Vol. 45, No. 6, pp. 2859-2862, Jun. 2009.   DOI
13 K. Lu, U. Jakobsen, and P. O. Rasmussen, “Single-phase hybrid switched reluctance motor for low-power low-cost applications,” IEEE Trans. Magn., Vol. 47, No. 10, pp. 3288-3291, Oct. 2011.   DOI
14 Y. Hasegawa, K. Nakamura, and O. Ichinokura, “A novel switched reluctance motor with the auxiliary windings and permanent magnets,” IEEE Trans. Magn., Vol. 48, No. 11, pp. 3855-3858, Nov. 2012.   DOI
15 H. Eskandari and M. Mirsalim, “An improved 9/12 twophase E-core switched reluctance machine,” IEEE Trans. Energy. Convers., Vol. 28, No. 4, pp. 951-958, Dec. 2013.   DOI
16 D. Wu, J. T. Shi, Z. Q. Zhu, and X. Liu, "Electromagnetic performance of novel synchronous machines with permanent magnets in stator yoke," IEEE Trans. Magn., Vol. 50, No. 9, Sep. 2014.
17 Z.-C. You, S.-M. Yang, C.-W. Yu, Y.-H. Lee, and S.-C. Yang, “Design of a high starting torque single-phase DCexcited flux switching machine,” IEEE Trans. Ind. Elect., Vol. 64, No. 12, pp. 9905-9913, Dec. 2017.   DOI
18 L. Xu, W. Zhao, J. Ji, G. Liu, Y. Du, Z. Fang, and L. Mo, "Design and analysis of a new linear hybrid excited flux reversal motor with inset permanent magnets," IEEE Trans. Magn., Vol. 50, No. 11, Nov. 2014.
19 H. Zhang, D.-H. lee, C.-W. Lee, and J.-w. Ahn, “design and analysis of segmented rotor type 12/8 switched reluctance motor,” J. Power Electron., Vol. 14, No. 5, pp. 866-872, Oct. 2014.   DOI
20 W. Hua, P. Su, M. Tong, and J. Meng, “Investigation of a five-phase E-core hybrid-excitation flux-switching machine for EV and HEV applications,” IEEE Trans. Ind. Appl., Vol. 55, No. 1, pp. 124-133, Jan. 2017.
21 P. Su, W. Hua, Z. Wu, P. Han, and M. Cheng, “Analysis of the operation principle for rotor-permanent-magnet fluxswitching machines,” IEEE Trans. Ind. Electron., Vol. 65, No. 2, pp. 1062-1073, Feb. 2018.   DOI
22 C. Lee, "Analysis and design of novel e-core common pole switched reluctance machine," PhD thesis, Virginia Polytechnic Institute and State University, Mar. 2010.
23 M. Masoumi and M. Mirsalim, “E-core hybrid reluctance motor with permanent magnets inside common stator poles,” IEEE Trans. Energy Conv., Vol. 33, No. 2, pp. 826-833, Jun. 2018.   DOI
24 R. Krishnan, Switched Reluctance Motor Drives Modelling, Simulation, Analysis, Design and Applications, Boca Rotan, CRC Press, 2001.
25 N. S. Lobo, "Doubly-salient permanent magnet fluxreversal-free-stator switched reluctance machines," PhD thesis, Virginia Polytechnic Institute and State University, Jan. 2011
26 F. Sahin, H. B. Ertan, and K. Leblebicioglu, “Optimum geometry for torque ripple minimization of switched reluctance motors,” IEEE Trans. Energy Convers., Vol. 15, No. 1, pp. 30-39, Mar. 2000.   DOI