• 제목/요약/키워드: Motor starting

Search Result 410, Processing Time 0.026 seconds

Speed Controller Transition Method for I-F Operation and Sensorless Operation of Permanent Magnet Synchronous Motor (영구자석 동기 전동기의 I-F 구동과 센서리스 구동을 위한 속도 제어 절환 기법)

  • Kim, Dong-Uk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.543-551
    • /
    • 2019
  • Permanent Magnet Synchronous Motors(PMSMs) have a wider range of applications due to their high output density and high efficiency. PMSMs are used not only in high-power density, high-performance motor-driven systems such as vehicle and robots, but also in systems where cost-cutting is very important, such as washing machines, air conditioners and refrigerators. To reduce costs, position sensorless control is required, which is generally difficult to be used under conditions of starting the motor. Thus, the I-F speed control that rotates the current vector at any speed in the starting procedure should be used at first, and then the sensorless speed control could be applied after PMSM rotates above a certain speed. Speed control performance in I-F speed control and sensorless speed control is very important. And more speed control performance should be maintained even in the transient in which the two control techniques are changed. In this paper, the speed controller transition method from I-F speed control to sensorless speed control of permanent magnet synchronous motor is proposed. Experiments were carried out on the washing machine drive system to verify the performance of the proposed technique.

Analysis of the Friction Characteristics of Parking Brake for Large Size Excavator (대형 굴삭기용 주차 브레이크의 마찰 특성 분석)

  • Lee, Y.B.;Kim, K.M.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.5-10
    • /
    • 2012
  • The parking brake is one of the essential units embedded in track driving motor for forward and backward motion of an excavator. It is composed of multi-friction discs. When the hydraulic motor stops, the multi-friction discs closely stick to the facing discs by acting of multi-spring forces. So, the friction forces generate the braking force by compressing the cylinder barrel of hydraulic motor. In this study, we combined the multi-friction discs to two kinds of spring which have different spring force, and the maximum torque measured at the rotational starting point of hydraulic motor through gradually increasing the rotational torque of load side hydraulic motor by use of 1 and 2 sheets of friction plates. And, under this experimental condition, the maximum coefficient of static friction and the characteristics of paper friction sheet were analyzed. The obtained experimental results will be applied to the design of parking brake system for producing large size excavator in the 85-ton weight class.

Effect of Robot-Assisted Hand Rehabilitation on Hand Function in Chronic Stroke Patients (손 재활 로봇의 적용이 만성 뇌졸중 환자의 손 기능 향상에 미치는 영향)

  • Park, Jin-Hyuck
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.273-282
    • /
    • 2013
  • The purpose of this study was to investigate effect of robot-assisted hand rehabilitation(Amadeo(R)) on hand motor function in chronic stroke patients. This study used a single-subject experimental design with multiple baselines across individuals. Three chronic stroke survivors with mild to sever motor impairment took part in study. Each participants had 2 weeks interval of starting intervention. Participants received robot-assisted therapy(45min/session. 3session/wk for 6wks). Finger active range of motion(AROM) was assessed by Range of Assessment program in Amadeo(R), and test-retest reliability was verified using Pearson correlation analysis. To investigate effect of Amadeo(R), finger AROM was measured immediately after each sessions and Fugl-Meyer Assessment of Upper extremity, Motor Activity Log, Nine hole peg board test and Jebsen-Taylor hand motor function test were assessed at pre-post intervention. Results were analyzed by visual analysis and comparison of pre-post tests. The test-retest reliability of Range of Assessment was good(r=.99). After robot-assisted therapy, finger AROM of participant 1, 2, and 3 was respectively improved by 18%, 3.6%, and 6% each. Hand motor function of participant 1, 3 was improved on all four tests, but not effect in participant 2. Robot-assisted hand rehabilitation could improve finger AROM and effect on hand motor function in chronic stroke patients.

Preliminary Design of High Altitude Test Facility for Kick Motor of KSLV-I Development (KSLV-I 킥모터용 고공환경모사 시험설비 구축을 위한 기본설계)

  • Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Kim, Sang-Heon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.180-187
    • /
    • 2007
  • Korea Aerospace Research Institute(KARI) is developing Korea Space Launch Vehicle(KSLV). KSLV-I is composed of liquid propulsion system for the first stage and apogee kick motor as the second stage. Kick motor has a high expansion ratio nozzle and its starting altitude is 300km high. To verify the performance of kick motor, high altitude test facility (HATF) to simulate its operating condition is necessary. This paper contains preliminary design for construction of HATF.

  • PDF

Development of the Starting Algorithm of a Brushless DC Motor Using the Inductance Variation (인덕턴스의 변화를 이용한 브러시리스 DC 모터의 초기 구동 알고리즘 개발 및 구현)

  • Park, Jae-Hyun;Chang, Jung-Hwan;Jang, Gun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.157-164
    • /
    • 2000
  • This paper presents a method to detect a rotor position and to drive a BLDC motor from standstill to medium speed without any position sensor comparing the current responses due to the inductance variation in the rotor position. A rotor position at a standstill is identified by the current responses of six pulses injected to each phase of a motor. Once the motor stars up pulse train that is composed of long and short pulses is injected to the phase corresponding to produce the maximum torque and the next phase continuously. it provides not only the torque but also the information of the next commutation time effectively when the response of long and short pulses crosses each other after the same time delay. This method which is verified experimentally using a DSP can drive a BLDC motor to the medium speed smoothly without any rattling and time delay compared with the conventional sensorless algorithm.

  • PDF

Design of PI-PD Controllers to Improve a Response Characteristic in Position Control System (위치제어계에서 응답특성 개선을 위한 PI-PD제어기의 설계)

  • Kim, Jong-Hyeok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.651-657
    • /
    • 2012
  • In many control fields high position performance is essentially required in reducing the over-shoot phenomena which is produced by improving the quick response in starting and in minimizing the variation of the response characteristic on disturbance and load variation In this paper, the design method for a position control is suggested for constructing the PI-PD controllers by using an internal PD feedback loop in PI and PD control system. Applying this method to the position control system used a DC servo motor as a driver, the transfer PI and PD controllers are designed simultaneously and the coefficients of these controllers are determined by using the transfer function of a plant and a proportional coefficient from mathematical technique. From the result of computer simulation in PI-PD control system by applying this control technique, we can verify the usefulness of this method in rejecting of over-shoot of starting, compensating of response variation on the load variation, and shorting the settling time.

Position Controller of Rail Guided Unmanned Monitoring System with the Driving Slip Compensator (주행 슬립 오차 보상기를 가지는 레일 가이드 무인 설비 감시 장치의 위치 제어기)

  • Bae, Jongnam;Kwak, Yunchang;Lee, Dong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.792-799
    • /
    • 2017
  • The real time unmanned monitoring system of an equipment's internal parts and condition requires the monitoring device to be able to stop at a set location on the rail. However, due to the slip between the driving surface and the roller, an error occurs between the actual position and the command position. In this paper, a method to compensate the position error due to the roller slip is proposed. A proximity sensor located at both ends of the rail detects the starting point and the maximum position pulse, linearly compensating the error between the angular position of the motor and the mechanically fixed starting and maximum position pulse of the rail in forward and reverse direction. Moreover, unlike the existing servo position controller, the motor adopts the position detection method of Hall sensor in BLDC (Brushless DC) and applies an algorithm for low-speed driving so that a stable position control is possible. The proposed rail guided unmanned monitoring system with driving slip compensator was tested to verify the effectiveness.

A Study On Field Test of IGBT Type Propulsion System fo Electric oilway (전동차용 IGBT형 추진제어장치의 본선시험에 관한 연구)

  • 정만규;고영철;방이석;서광덕
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.515-521
    • /
    • 2000
  • This paper describes the field test results of IGBT VVVF inverter for the railway propulsion system. The 1,650kVA IGBT VVVF inverter has been developed. Therefore, the field test is performed in SMG 6 Line to confirm its the reliability and performance. The train consists of 4M4T and the electrical equipment for field test are as follows : VVVF inverter 4 sets, 16 traction motors and 2 SIVs. The propulsion system is composed with 1C4M(1-Controller 4-Motors). The results of propulsion system which have the excellent acceleration/deceleration and the jerk characteristics as well as starting ability on slope are taken through the field test.

  • PDF