• Title/Summary/Keyword: Motor power

Search Result 4,298, Processing Time 0.042 seconds

High Power Factor Control of High-speed Single-phase BLDC Motor (초고속 단상 BLDC 전동기의 고역률 전력 제어 방법)

  • Lee, Wook-Jin;Jung, Bumun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.144-149
    • /
    • 2016
  • This paper presents a power control method of high-speed single-phase BLDC motor. Most electric appliances require a power factor corrector (PFC) to mitigate grid current harmonics. However, the reactive components and power semiconductors in the PFC increase system cost and dimension. In this paper, a new motor drive system for a high-speed single-phase BLDC motor is proposed, which can decrease grid current harmonics without PFC by directly manipulating motor power and eliminating bulky electrolytic dc-link capacitor. Given that the proposed motor power control method does not require motor current controller, no current sensor is necessary. Moreover, the proposed algorithms can be easily implemented using a low-cost micro-controller. The effectiveness of the proposed power control method is verified by experiments.

A Research on Self-excitation and Power Factor Compensation of Induction Motor (유도전동기의 자기여자 및 역률보상에 대한 연구)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.236-240
    • /
    • 2014
  • Induction motor requires a rotating magnetic for rotation. Current required to generate the rotating magnetic field is magnetizing current. This magnetizing current is associated with the reactive power. This reactive power must be supplied from source side. Therefore, the power factor of the induction motor is low. So, the capacitor is installed on the motor terminals to compensate for the low power factor. Power supply company has recommended to maintain a high power factor to the customer. If the capacitor current is greater than the magnetizing current of the motor, there is a possibility that the self-excitation occurs. So it is necessary to calculate the optimal capacity capacitor current does not exceed the magnetizing current. In this study, we first compute the no-load current and the reactive power of the induction motor and then calculates the limit of the maximum power factor without causing self-excitation.

Analysis of the Power for a Decanter-Type Centrifuge (II) - Total Power and the Power-Transmission Mechanism - (Decanter형 원심분리기의 동력 계산 (II) - 총동력과 동력전달 기구 -)

  • Suh, Yong-Kweon;Han, Geun-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.938-947
    • /
    • 2003
  • In this paper, we derived the formula for estimating the power of the electric motors needed to operate the Decanter-type centrifuge. In the derivation of the formula the sludge-removal torque is to be supplied from the formula derived in the first paper. The intricate nature of the transmission mechanism in the planetary gear trains of the sludge-removal power and torque has been clarified in this second paper. In particular we considered two-motor system, where the main motor drives the machine while the differential-speed control motor plays the role of braking in adjusting the differential speed. Sample calculation for the specific design treated in the first paper showed that the selection criterion for the main motor depends on the lower limit of the differential speed; when the lower limit is set low, it should be selected based on the steadily operating power, while it should be selected based on the starting power when the lower limit is set high. The total power required by both the main motor and the differential-speed control motor increases as the differential speed is decreased. It is suggested that the power loss in the differential-speed control motor could be minimized by attaching an electric generator to it.

Improvement of Synchronous Motor Transient Stability by Phase Slipping (상변위에 의한 동기전동기의 과도안정도 개선)

  • Song Yop Hahn
    • 전기의세계
    • /
    • v.21 no.2
    • /
    • pp.20-24
    • /
    • 1972
  • The transient stability of the synchronous motor is generally improved by damper winding or flywheel. However the synchronous motor at full load will be pulled out from normal operation state when the period of power failure exceeds approximately ten cycle per second. This paper studies the method of improving the stability of synchronous motor by equipping the phase slipping switch between the motor and power source. This paper shows the motor does not pull out, which results from the decrease of power angle to about 30 electrical degrees by means of the switch even when the relatively long period of power failure brings the power angle to some 150 electrical degrees.

  • PDF

Suitability Review for Power Correction Parameter of Induction Motor (유도전동기 역률 보상 파라미터의 적정성 검토)

  • Kim, Jong-Gyeum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.101-109
    • /
    • 2008
  • Induction motor needs reactive power to sustain the electromagnetic field required for rotating. If reactive power is provided by the load side instead of the source side, power factor will be increased. Power factor of induction motor is usually low and needs to be compensated with power capacitor. In domestic regulations, Capacitor capacity for the power factor correction of induction motor should be complied with the recommended value by the motor output. But, at the same output, characteristics of induction motor is different from each other by the rotation speed and is not suitable for application of regular capacitor value regardless of motor's characteristics. In this paper, we compared to each other with the existing value and new proposed value with rotation speed under the same output condition, confirmed that power capacitor capacity is needed to upgrade for the better power factor.

A Study on the Optimum Selection of the Power Factor Compensation Condenser According to the Improved Efficiency of Induction Motor (유도전동기 효율향상에 따른 역률 보상 콘덴서 최적 선정에 대한 연구)

  • Kim, Jong-Gyeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1311-1315
    • /
    • 2016
  • Induction motor requires a rotating magnetic field for rotation. Current required to generate the rotating magnetic field is immediately magnetizing current. This magnetizing current is associated with the reactive power. Induction motor is always required reactive power. If reactive power is supplied only to the power supply side, the power factor is low. Therefore, it is to compensate the power factor by connecting capacitors in parallel to the motor terminal. If the capacitor current is greater than the magnetizing current of the motor, there is a possibility that the self-excitation occurs. High voltage generated by the self-excitation leads to insulation failure on the motor. So it is necessary to calculate the power factor correction capacitor capacity the most suitable to the extent that the magnetizing current does not exceed the capacitor current. In this study, we first computed the magnetization current and the reactive power of the induction motor and then calculates a limit of the maximum power factor by comparing the magnetizing current and the capacitor current installed in order to achieve the target power factor.

MOTOR CONTROL CENTER (MCC) BASED TECHNOLOGY STUDY FOR SAFETY-RELATED MOTOR OPERATED VALVES

  • Kang, Shin-Cheul;Park, Sung-Keun;Lee, Do-Hwan;Kim, Yang-Seok
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.155-162
    • /
    • 2006
  • It is necessary to monitor periodically the operability of safety-related motor-operated valves (MOVs) in nuclear power plants. However, acquiring diagnostic signals for MOVs is very difficult, and doing so requires an excessive amount of time, effort, and expenditure. This paper introduces an accurate and economical method to evaluate the performance of MOVs remotely. The technique to be utilized includes electrical measurements and signal processing to estimate the motor torque and the stem thrust, which have been cited as the two most effective parameters in diagnosing MOVs by the US Nuclear Regulatory Commission. The motor torque is calculated by using electrical signals, which can be measured in the motor control center (MCC). Some advantages of using the motor torque signature over other signatures are examined. The stem thrust is calculated considering the characteristics of the MOV and the estimated motor torque. The basic principle of estimating stem thrust is explained. The developed method is implemented in diagnostic equipment, namely, the Motor Operated Valve Intelligent Diagnostic System (MOVIDS), which is used to obtain the accuracy of and to validate the applicability of the developed method in nuclear power plants. Finally, the accuracy of the developed method is presented and some examples applied to field data are discussed.

Motor Bus Residual Voltage Characteristics at Nuclear Power Plant (원자력발전소 고압전동기 모선 잔류전압 특성)

  • Byun, Sang-Youn;Kim, Sun-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.662_663
    • /
    • 2009
  • Motor bus transfer involves the process of transferring a bus that has several critical motors to an alternate source of power when the main normal power source feeding them is interrupted. Bus transfer is a time-critical application in which the transfer progress depends on various parameters such as the type of motor, load on the motor at the time of transfer, inertia of the motor, and the combined open-circuit time constant of various motors present on the bus at the time of transfer. This paper present the result of modeling and simulation of nuclear power motor bus using ETAP(Electrical Transient Analyzing Program) program for motor and motor bus residual voltage decay characteristics.

  • PDF

Design and Characteristics Analysis of Switched Reluctance Motor for Electric Power Pallet Vehicle (전동지게차용 스위치드 릴럭턴스 전동기 설계 및 특성해석)

  • Oh, Ju-Hwan;Lee, Byeong-Seok;Lee, Choon-Tack;Jung, Woo-Yong;Kwon, Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.511-518
    • /
    • 2005
  • This paper presents the design and drive characteristics of a switched reluctance motor for an electric power pallet vehicle. The designed switched reluctance motor is redesigned by using the finite element analysis(FEA) as a variation of the pole-arc angle for the purpose of an electric power pallet vehicle performance. The output power and torque characteristics of a switched reluctance motor are variable by switching angles of the commutator. Therefor this paper is studied about relationship between the output power and torque characteristics of a switched reluctance motor according to switching angles. The output power of the characteristic point of an electric power pallet vehicle has been shown by experiment. The designed motor drive system operates with the low voltage and high current with using the battery. The core and frame temperatures were described. In this paper, the designed motor is shown better drive characteristics than the DC motor from the rated to maximum, which is verified by the finite element analysis and experimental results.

A Characteristic Study on the Power Factor Compensation Application of High Voltage Induction Motor (고압 유도전동기 역률 보상설비의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.225-230
    • /
    • 2008
  • Reactor starting method has the advantage of simplicity and closed transition in spite of lower starting torque per kVA. This method allows a smooth start with almost no observable disturbance on transition and is suitable for applications such as centrifugal pumps or fans. Reactive power doesn't contribute to work but needs to sustain the electromagnetic field required for the induction motor to operate. Starting power factor of induction motor is specially lower than running power factor. Power factor application is needed to compensate for the lower power factor of induction motor. This power factor compensation systems is occasionally being hit by the effects of the starting reactor connection position at the starting, stopping of high-voltage induction motor. This paper describes voltage and current stress affected by the installation position of power factor compensation application at the reactor starting method.