• 제목/요약/키워드: Motor neurons

검색결과 175건 처리시간 0.03초

Motor Neuron Disease and Stem Cell Approach for Its Remediation

  • Kim, Jong Deog;Bhardwaj, Jyoti;Chaudhary, Narendra;Seo, Hyo Jin
    • KSBB Journal
    • /
    • 제28권5호
    • /
    • pp.269-274
    • /
    • 2013
  • Motor neuron disease (MND) is a fatal neurodegenerative disorder caused by progressive and selective degeneration of motor neurons (MNs). Because of the versatile nature, stem cells have the potential to repair or replace the degenerated cells. In this review, we discussed stem cell based therapies including the use of embryonic stem cells (ESCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs) and genetically engineered cells to produce the neurotrophic factors for the treatment of MND. To achieve this goal, the knowledge of specificity of the cell target, homing and special markers are required.

HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어 (High Performance of Induction Motor Drive with HAl Controller)

  • 남수명;최정식;고재섭;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.570-572
    • /
    • 2005
  • This paper is proposed adaptive hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

목적성 행동 모방학습을 통한 의도 인식을 위한 거울뉴런 시스템 계산 모델 (Computational Model of a Mirror Neuron System for Intent Recognition through Imitative Learning of Objective-directed Action)

  • 고광은;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.606-611
    • /
    • 2014
  • The understanding of another's behavior is a fundamental cognitive ability for primates including humans. Recent neuro-physiological studies suggested that there is a direct matching algorithm from visual observation onto an individual's own motor repertories for interpreting cognitive ability. The mirror neurons are known as core regions and are handled as a functionality of intent recognition on the basis of imitative learning of an observed action which is acquired from visual-information of a goal-directed action. In this paper, we addressed previous works used to model the function and mechanisms of mirror neurons and proposed a computational model of a mirror neuron system which can be used in human-robot interaction environments. The major focus of the computation model is the reproduction of an individual's motor repertory with different embodiments. The model's aim is the design of a continuous process which combines sensory evidence, prior task knowledge and a goal-directed matching of action observation and execution. We also propose a biologically inspired plausible equation model.

Tetramethylpyrazine이 흰쥐 척수압박손상의 신경세포 자연사에 미치는 영향 (Effect of Tetramethylpyrazine on Neuronal Apoptosis in Spinal Cord Compression Injury of Rats)

  • 조종진;김승환;이준석;신정원;김성준;손낙원
    • 한방재활의학과학회지
    • /
    • 제23권1호
    • /
    • pp.1-13
    • /
    • 2013
  • Objectives : The pathophysiology of acute spinal cord injury(SCI) may be divided into primary and secondary mechanisms of injury. The secondary mechanism involves free radical formation, excitotoxicity, inflammation and apoptotic cell death, and sets in minutes after injury and lasts for weeks or months. During this phase the spinal tissue damages are aggravated. Therefore, secondary mechanisms of injury serve as a target for the development of neuroprotective drug against SCI. The present study investigated the effect of tetramethylpyrazine(TMP), an active ingredient purified from the rhizome of Ligusticum wallichii(川芎, chuanxiong), on neuronal apoptosis in spinal cord compression injury in rats. Methods : SCI was subjected to rats by a static compression method(35 g weight, 5 mins) and TMP was treated 3 times(30 mg/kg, i.p.) during 48 hours after the SCI. Results : TMP ameliorated the tissue damage in peri-lesion of SCI and reduced TUNEL-labeled cells both in gray matter and in white matter significantly. TMP also attenuated Bax-expressed motor neurons in the ventral horn and preserved Bcl-2-expressed motor neurons. Conclusions : These results indicate that TMP plays a protective role in apoptotic cell death of neurons and oligodendrocytes in spinal cord injury. Moreover, it is suggested that TMP and TMP-containing chuanxiong may potentially delay or protect the secondary spinal injury.

흥분독성 소뇌손상 백서모델에서 운동기술학습이 균형 및 협응력에 미치는 영향 (Effects of Motor Skill Learning on Balance and Coordination in Excitoxicity Induced Cerebellar Injury Model of Rat)

  • 김기도;민경옥;심재환;정재영;김용억;김경윤;김계엽;심기철;김은정;남기원
    • 대한물리의학회지
    • /
    • 제5권3호
    • /
    • pp.455-465
    • /
    • 2010
  • Purpose : This study is intended to examine the motor skill learning on balance and coordination in the cerebellar injured rats by 3AP. Methods : This study selected 60 Sprague-Dawley rats of 8 weeks. Experiment groups were divided into four groups and assigned 15 rats to each group. Group I was a normal control group(induced by saline); Group II was a experimental control group(cerebellar injured by 3AP); Group III was a group of motor skill learning after cerebellar injured by 3AP; Group IV was a group of treadmill exercise after cerebellar injured by 3AP. In each group, motor performance test, histologic observations, synaptophysin expression and electron microscopy observation were analyzed. Results : In motor performance test, the outcome of group II was significantly lower than the group III, IV(especially group III)(p<.001). In histological finding, the experimental groups were destroy of dendrities and nucleus of cerebellar neurons. Group III, IV were decreased in degeneration of cerebellar neurons(especially group III). In immunohistochemistric response of synaptophysin in cerebellar cortex, experimental groups were decreased than group I. Group III's expression of synaptophysin was more increased than group II, IV. In electron microscopy finding, the experimental groups were degenerated of Purkinje cell. Conclusion : These result suggest that improved motor performance by motor skill learning after harmaline induced is associated with dynamically altered expression of synaptophysin in cerebellar cortex and that is related with synaptic plasticity.

Differential changes of nicotinamide adenine dinucleotide phosphate-diaphorase, neuropeptide Y and vasoactive intestinal peptide in the cerebral cortex of the rat after repeated electroacupuncture

  • Kim, Yong-Suk;Kim, Jong-In;Kim, Chang-Hwan;Yoo, Jin-Hwa;Huh, Young-Buhm
    • Journal of Acupuncture Research
    • /
    • 제22권2호
    • /
    • pp.13-18
    • /
    • 2005
  • This study was undertaken to investigate the effects of electroacupuncture(EA) on Choksamni(ST36), a well-known acupuncture site, on nicotinamide adenine dinucleotide phosphate-diaphorase(NADPH-d), neuropeptide Y(NPY) and vasoactive intestinal peptide(VIP) in the cerebral cortex of spontaneously hypertensive rats(SHR). EA on Choksamni was applied using 2Hz electrical biphasic pulses of 10min, 3 times a week for a total of 10 sessions. Thereafter we evaluated changes in NADPH-d-positive neurons histochemically and changes in NPY and VIP-positive neurons immunohistochemically. The optical density of NADPH-d-positive neurons in the Choksamni group was significantly lower in all areas of the cerebral cortex than in the control group. However, the optical density of NPY-positive neurons in the Choksamni group was similar to that of the controls in most areas of the cerebral cortex, with the exception of the primary motor and visual cortices. The optical density of VIP-positive neurons in the Choksamni group was significantly decreased as compared to the control group in most areas of the cerebral cortex, with the exception of the cingulate cortex. The present results demonstrated that EA on Choksamni changes the activity of the NO system, and that stimulation at the same level, causes selective changes within the peptidergic system in the cerebral cortex of SHR.

  • PDF

바깥요도조임근을 지배하는 Onuf 핵에서 관찰된 Zinc 함유 신경종말: HRP 추적법 및 zinc selenium 조직화학법 (Zinc-enriched (ZEN) Terminals in Onuf's Nucleus Innervating External Urethral Sphincter: HRP Tracing Method and Zinc Selenium Autometallography)

  • 이보예;김이석;이법이;이현숙;탁계래;이영일;이정열;조승묵
    • Applied Microscopy
    • /
    • 제36권4호
    • /
    • pp.299-305
    • /
    • 2006
  • Onuf 핵이란 척수 앞회색질뿔에 위치하는 운동핵으로 음부신경을 통해 방광과 항문괄약근을 조절하는 운동핵의 하나이다. Onuf핵은 앞회색질뿔내 다른 운동신경핵과는 달리 회색질척수염과 같은 병적인 상황에서도 상당기간 손상되지 않고 기능을 유지하며, 퇴행성변화의 정도가 미약한데 정확한 원인에 관해서는 논란의 여지가 많다. 본 연구는 흰쥐 척수회색질내 바깥요도조임근을 신경지배하는 Onuf핵의 위치를 HRP 추적법으로 확인하였으며, 이들 신경핵내 운동신경세포와 연접해 있는 zinc함유(ZEN)신경종말의 미세구조를 zinc selenium조직화학법(AMG)으로 염색하여 관찰하였다. HRP 추적법의 결과로는, Onuf핵은 랫드 척수회색질앞뿔의 내측에서 가지돌기의 무리와 거의 맞닿고 있었으며, 모양은 대개 구형 또는 난원형을 띠었다. 이들 신경핵내 운동신경세포의 세포체의 크기는 다른 운동핵의 신경세포보다 다소 작았다. 한편 AMG로 염색한 표본에서는 Onuf핵에 분포하는 ZEN신경종말은 다른 운동핵의 ZEN 신경종말과 비교하여 매우 높은 밀집도를 보였으나, 크기 면에서도 상대적으로 작았다. 미세구조 관찰로는 Onuf 핵내 ZEN신경종말은 운동핵의 세포체 및 가지돌기와 신경연접은 이루고 있었다. 이들 ZEN 신경종말은 주로 납작한 연접소포를 함유하였으며, 대칭적인 신경연접구조를 이루고 있었다.

신장 자극이 근 수축 촉진에 미치는 영향에 관한 고찰 (Review of Effect of the Stretch Stimulus on Muscle Contraction Facilitation)

  • 김미현;배성수;최재원
    • PNF and Movement
    • /
    • 제1권1호
    • /
    • pp.19-25
    • /
    • 2003
  • Objectives: The purpose of this article is to summarize the effect of stretch stimulus on muscle contraction facilitation. Methods : Some studies of the stretch reflex. ${\gamma}-motor$ system, and the effect of stretch stimulus on muscle activation were reviewed. Results : To facilitate muscle contraction, before the movement is started, the prime mover is in stretched position. The patient must be instructed to occur voluntary muscle contraction after quick stretching. It elicits the functional stretch reflex to produce a more powerful and functional contraction. The intensity of muscle contraction depends on two ways. One is firing rate of ${\alpha}-motor$ neuron by sensory information from the periphery induced in stretched position and stretch reflex. The other is excitation level of the cortical motor area and the corresponding motor neurons. Conclusions: To activate central nervous system and to increase firing rate of ${\alpha}-motor$ neuron. the therapist should apply quick stretch for the patient with stretched position and the patient should make voluntary muscle contraction.

  • PDF

흰쥐에서 WGA-HRP와 pseudorabies virus를 이용한 정관의 신경로에 대한 연구 (Neural pathway innervating ductus Deferens of rats by pseudorabies virus and WGA-HRP)

  • 이창현;정옥봉;고병문;이봉희;김수명;김인식;양홍현
    • 대한수의학회지
    • /
    • 제43권1호
    • /
    • pp.11-24
    • /
    • 2003
  • This experimental studies was to investigate the location of PNS and CNS labeled neurons following injection of 2% WGA-HRP and pseudorabies virus (PRY), Bartha strain, into the ductus deferens of rats. After survival times 4-5 days following injection of 2% WGA-HRP and PRV, the rats were perfused, and their brain, spinal cord, sympathetic ganglia and spinal ganglia were frozen sectioned ($30{\mu}m$). These sections were stained by HRP histochemical and PRY inummohistochemical staining methods, and observed with light microscope. The results were as follows ; 1. The location of sympathetic ganglia projecting to the ductus deferens were observed in pelvic ganglion, inferior mesenteric ganglion and L1-6 lwnbar sympathetic ganglia. 2. The location of spinal ganglia projecting to the ductus deferens were observed in T13-L6 spinal ganglia. 3. The PRY labeled neurons projecting to the ductus deferens were observed in lateral spinal nucleus, lamina I, II and X of cervical segments. In thoracic segments, PRY labeled neurons were observed in dorsomedial part of lamina I, II and III, and dorsolateral part of lamina IV and V. Densely labeled neurons were observed in intermediolateral nucleus. In first lumbar segment, labeled neurons were observed in intermediolateral nucleus and dorsal commisural nucleus. In sixth lumbar segment and sacral segments, dense labeled neurons were observed in sacral parasympathetic nuc., lamina IX and X. 4. In the medulla oblongata, PRV labeled neurons projecting to the ductus deferens were observed in the trigeminal spinal nuc., A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nuc., rostroventrolateral reticular nuc., area postrema, nuc. tractus solitarius, raphe obscurus nuc., raphe pallidus nuc., raphe magnus nuc., parapyramidal nuc., lateral reticular nuc., gigantocellular reticular nuc.. 5. In the pons, PRV labeled neurons projecting to the ductus deferens were ohserved in parabrachial nuc., Kolliker-Fuse nuc., locus cooruleus, subcooruleus nuc. and AS noradrenalin cells. 6. In midbrain, PRV labeled neurons projecting to the ductus deferens were observed in periaqueductal gray substance, substantia nigra and dorsal raphe nuc.. 7. In the diencephalon, PRV labeled neurons projecting to the ductus deferens were observed in paraventricular hypahalamic nuc., lateral hypothalamic nuc., retrochiasmatic nuc. and ventromedial hypothalamic nuc.. 8. In cerebrum, PRV labeled neurons projecting to the ductus deferens were observed in area 1 of parietal cortex. These results suggest that WGA-HRP labeled neurons of the spinal cord projecting to the rat ductus deferens might be the first-order neurons related to the viscero-somatic sensory and sympathetic postganglionic neurons, and PRV labeled neurons of the brain and spinal cord may be the second and third-order neurons response to the movement of smooth muscles in ductus deferens. These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory and motor system monitaing the internal environment. These observations provide evidence for previously unknown projections from ductus deferens to spinal cord and brain which may be play an important neuroanatornical basic evidence in the regulation of ductus deferens function.

Combinatorial modulation of the spontaneous firings by glutamate receptors in dopamine neurons of the rat substantia nigra pars compacta

  • Kim, Shin-Hye;Park, Yu-Mi;Sungkwon Chung;Uhm, Dae-Yong;Park, Myoung-Kyu
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.40-40
    • /
    • 2003
  • Spontaneous firing rate and patterns of dopaminergic neurons in midbrain are key factors in determining the level of dopamine at target loci as well as in the mechanisms such as reward and motor coordination. Although glutamate, as a major afferent, is reported to enhance firing rate, the detailed actions of NMDA-, AMPA/kainate-, and metabotropic glutamate receptors (mGluR) on filing patterns are not clear. Thus we have investigated the role of glutamate receptors on the spontaneous firing activities using the network-free, acutely isolated dopamine neurons from substantia nigra pars compacta(SNc) of the 9-14 days rat. The isolated cells showed spontaneous regular firings of near 2.5 Hz, whose rate was enhanced by glutamate at submicromolar levels (0.3 $\square$M) but abolished by high concentrations more than 10 $\square$M.

  • PDF