• Title/Summary/Keyword: Motor motion equation

Search Result 77, Processing Time 0.034 seconds

A design and simulation of a hydraulic control valve in transmission (트랜스 미션에 유압식 콘트롤밸브의 설계와 시뮬레이션)

  • 곽희성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.167-174
    • /
    • 1997
  • In this paper, the mathematical model of the hydraulic control valve is formulated, that is, this dynamic modeling which includes the motion equations and continuity equations can analyze the dynamic characteristics of the hydraulic control valve. The control valve for the transmission has the Over Speed Protection to protect a hydraulic travel motor. Therefore, this simulation shows the over speed protection and researches the main design parameters. The results of the computer simulation were assured through the experiment. From the comparison between both results, it is shown that this simulation program is useful and effective.

  • PDF

Simulation of tracking errors for non-circular cutting using voice coil motor (VCM을 이용한 비원형 형상 가공의 궤적 오차 시뮬레이션)

  • Hwang J.D.;Kwak Y.K.;Kim S.H.;Ahan J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.57-58
    • /
    • 2006
  • A Simulation model is developed to minimize the path tracking errors when the non-circular cutting is done by a VCM(voice coil motor) driven tool. The relationship between PWM(Pulse Width Modulation) duty ratio and velocity of voice coil motor is theoretically derived from combining the circuit equation for the coils and the motion equation for the magnetic rod of the voice coil motor. The path tracking errors are showed differently according to the rotational speed, the number of segments and the control period in digital control. Given a required accuracy in the non-circular cutting, the optimal values for those parameters are determined based on the developed simulation model.

  • PDF

An Analysis of Dynamic Behavior of Fluid Dynamic Bearing for Hard Disk Drive Spindle Motor

  • Song, Young-Han;Yoo, Jin-Gyoo;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.18-26
    • /
    • 2003
  • Recently, fluid dynamic bearings (EDBs) have important applications in miniature rotating machines such as those found in the computer information storage industry, due to their outstanding low acoustic noise and NRRO (Non-Repeatable Run Out) characteristics. This research investigates the dynamic behavior of fluid dynamic bearings composed of hydrodynamic herringbone groove journal and spiral groove thrust bearing. The five degrees of freedom of FDB are considered to describe the real motion of a general rotor bearing system. The Reynolds equation and five nonlinear equations of motion for the dynamic behavior are solved simultaneously, The incompressible Reynolds equation is solved by using the finite element method (FEM) in order to calculate the pressure distribution in a fluid film and the five equations of motion by using the Runge-Kutta method. The reaction forces and moments are obtained by integrating the pressure along the fluid film. Numerical results are validated by comparing with the previously published experimental and numerical results. As a result the dynamic behavior of FDB spindle such as orbit, floating height, and angular orbit is investigated by considering the conical motion under the static and dynamic load conditions.

Structural Equation Modeling of Factors Contributing to Activities of Daily Living in Children With Cerebral Palsy (뇌성마비 아동의 일상생활동작에 영향을 미치는 요인에 관한 구조방정식 모형 검증)

  • Park, Eun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.206-217
    • /
    • 2009
  • The purpose of this study was to investigate the cause-effect relationship between motor impairments, hand function, gross motor function and activities of daily living (ADL) in children with cerebral palsy through the analysis of structural equation modeling. For this, 105 children with cerebral palsy (between 6 and 12 years old) were assessed about muscle tone and strength, range of motion, abilities of selective motor control, hand function, gross motor function and ADL. The results of this study were follows: Firstly, there were significant correlations between motor impairments of muscle tone, muscle strength, the abilities of selective motor control and ADL (p < .05); Secondly, a good correlation between the gross motor function, hand function and ADL was found in all children (p < .05); Thirdly, the appropriateness of research model was good. This study focused on exploration of the relationship between the motor impairment, gross motor function, hand function and ADL through structural equation modeling.

Robust Position Control of a Single-Link Flexible Manipulator Using Sliding Mode and Piezofilm Actuator (슬라이딩모드와 압전필름 작동기를 이용한 단일링크 유연 머니퓰레이터의 강건위치제어)

  • 최승복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1371-1381
    • /
    • 1995
  • A novel hybrid control scheme to actively control the endpoint position of a very flexible single-link manipulator is proposed. The control scheme consists of a motor mounted at the beam hub and a piezofilm actuator bonded to the surface of the flexible link. The control torque of the motor to produce a desired motion is firstly determined by employing the sliding mode control theory on the equation of motion of the rigid link having the same mass as that of the proposed flexible link. The torque is then applied to the flexible manipulator in order to activate the commanded motion. During the motion, undesirable oscillation is actively suppressed by applying a feedback control voltage to the piezofilm actuator. Consequently, the imposed desired position is accomplished. In order to demonstrate high control performances accrued from the proposed method, computer simulations are undertaken by treating both regulating and tracking control problems.

Hybrid Control of Position/Tension for a Stringing Troy Wire (가설 트롤리선의 위치 / 장력 혼합제어)

  • Hong, Jeng-Pyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.932-938
    • /
    • 2009
  • As a stringing troy wire is installed by manual operation, it is necessary to scheme the automatic system for stringing troy wire. To accomplish a task of this kind, in this paper an approach to designing controllers for the hybrid Position/Tension control of a stringing troy wire is presented. Position control system is designed based on equation of dc motor and motion equation of robot, it is controlled by feedback with a detected speed dc motor. Tension control system is designed based on equation of ac servomotor for generating torque and dynamic equation of a troy wire, it is controled by feedback with a detected tension. The control parameters is determined by simulation in independence operation of each system. To suppress a mutual interference that the disturbance occur in operating of two task at same time. Dynamic hybrid control is proposed by feed forward compensator with a disturbance accelerator and a step torque at start. The operation of proposed system is simulated and experimented, results is verified the utilities.

Fault Diagnosis of Rotor Bars in a Single Phase Induction Motor Monitoring Electromechanical Parameters (기전연성계 해석을 이용한 단상유도전동기의 회전자 결함진단에 관한 연구)

  • Park, S.J.;Chang, J.H.;Jang, G.H.;Lee, Y.B.;Kim, C.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.802-808
    • /
    • 2000
  • This paper characterizes the electromechanical parameters due to the fault of rotor bars in a squirrel cage induction motor. Simulation is performed to investigate how broken rotor bars have effect on them by solving the time-stepping finite element equation coupled with magnetic field equation, circuit equation and mechanical equation of motion. It shows that the asymmetry of magnetic flux due to the broken rotor bar introduces the beating phenomenon in time domain and the sideband frequencies in frequency spectra, respectively, to the stator current, torque, speed, magnetic force and vibration of a rotor. However, vibration of a rotor would be the most effective monitoring parameters to detect the faults of rotor bars.

  • PDF

Duty Ratio-Displacement Model in PWM Control of Voice Coil Actuator (보이스 코일 액츄에이터의 PWM 제어에서 듀티비-변위 모델 연구)

  • Hwang, Jin-Dong;Kwak, Yong-Kil;Kim, Ju-Hyun;Kim, Sun-Ho;Ahn, Jung-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.59-66
    • /
    • 2007
  • Voice coil actuator is used linear motion system that requires precision positioning control. In order to control precision positioning of voice coil actuator, relation model between duty ratio and moving displacement of voice coil actuator is needed. This paper present a duty ratio - displacement model in PWM control of voice coil actuator. Transfer function of voice coil actuator is obtained by combining voice coil motor's equation of motion with the equation of circuit and characteristic of voice coil motor. Consider to initial condition of velocity and current, transfer function is transformed mathematical model. The induced model can predict output displacement, velocity and current according to duty ratio and amplitude. The model is verified by experimental tests such as velocity and displacement response of voice coil motor. Simulated results have tracking errors of less than 10 percent of experimental results.

  • PDF

Finite Element Analysis of Unbalance Response of a High Speed Flexible Polygon Mirror Scanner Motor with Asymmetric Finite Element Equations (비대칭 유한 요소 방정식으로 표현되는 고속 유연 폴리곤 미러 스캐너 모터의 유한 요소 불평형 응답 해석)

  • Seo, Chan-Hee;Jung, Kyung-Moon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1022-1027
    • /
    • 2007
  • This paper presents a method to analyze the unbalance response of a high speed polygon mirror scanner motor supported by sintered metal bearing and flexible structures by using the finite element method and the mode superposition method considering the asymmetry of the gyroscopic effect and sintered metal bearing. The eigenvalues and eigenvectors are calculated by solving the eigenvalue problem and the adjoint eigenvalue problem by using the restarted Arnoldi iteration method. The decoupled equations of motion can be obtained from global finite element motion equations by using the orthogonal relation between the right eigenvectors and left eigenvectors. The decoupled equations of motion are used to analyze the unbalance response of a high speed polygon mirror scanner motor. The validity of the proposed method is verified by comparing the simulated unbalance response with the experimental results.

  • PDF

Electromechanical Characteristics of a Squirrel Cage Induction Motor due to Broken Rotor Bars and Rotor Eccentricity (회전자 바 개방과 회전자 편심에 의한 단삼 유도 전동기의 전기 및 기계적 특성 해석)

  • Park, Sang-Jin;Jang, Jeong-Hwan;Jang, Geon-Hui;Lee, Yong-Bok;Kim, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.425-433
    • /
    • 2002
  • This research investigates the electromechanical characteristics of a sing1e-phase squirrel cage induction motor due to broken rotor bars and rotor eccentricity. Numerical analysis is performed by solving the nonlinear time-stepping finite element equation coupled with the magnetic field equation, circuit equation and mechanical equation of motion. It shows that the asymmetry of magnetic flux due to the broken rotor bars and rotor eccentricity introduce a change in the stator current, torque, speed, magnetic force and vibration of a rotor at the same time. However, even in the existence of rotor eccentricity, 3 broken rotor bar introduces a dominant change in the magnetic force and rotor displacement, i.e., beating phenomenon in time domain and sideband frequencies in frequency spectra, respectively.