• 제목/요약/키워드: Motor faults

검색결과 209건 처리시간 0.028초

Wing Technique: A Novel Approach for the Detection of Stator Winding Inter-Turn Short Circuit and Open Circuit Faults in Three Phase Induction Motors

  • Ballal, Makarand Sudhakar;Ballal, Deepali Makarand;Suryawanshi, Hiralal M.;Mishra, Mahesh Kumar
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.208-214
    • /
    • 2012
  • This paper presents a novel approach based on the loci of instantaneous symmetrical components called "Wing Shape" which requires the measurement of three input stator currents and voltages to diagnose interturn insulation faults in three phase induction motors operating under different loading conditions. In this methodology, the effect of unbalanced supply conditions, constructional imbalances and measurement errors are also investigated. The sizes of the wings determine the loading on the motor and the travel of the wings while their areas determine the degree of severity of the faults. This approach is also applied to detect open circuit faults or single phasing conditions in induction motors. In order to validate this method, experimental results are presented for a 5 hp squirrel cage induction motor. The proposed technique helps improve the reliability, efficiency, and safety of the motor system and industrial plant. It also allows maintenance to be performed in a more efficient manner, since the course of action can be determined based on the type and severity of the fault.

A Fault Severity Index for Stator Winding Faults Detection in Vector Controlled PM Synchronous Motor

  • Hadef, M.;Djerdir, A.;Ikhlef, N.;Mekideche, M.R.;N'diaye, A. O.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2326-2333
    • /
    • 2015
  • Stator turn faults in permanent magnet synchronous motors (PMSMs) are more dangerous than those in induction motors (IMs) because of the presence of spinning rotor magnets that can be turned off at will. Condition monitoring and fault detection and diagnosis of the PMSM have been receiving a growing amount of attention among scientists and engineers in the past few years. The aim of this study is to propose a new detection technique of stator winding faults in a three-phase PMSM. This technique is based on the image analysis and recognition of the stator current Concordia patterns, and will allow the identification of turn faults in the stator winding as well as its correspondent fault index severity. A test bench of a vector controlled PMSM motor behaviors under short circuited turn in two phases stator windings has been built. Some experimental results of the phase to phase short circuits have been performed for diagnosis purpose.

직류전동기 구동 원심펌프-파이프 계통의 고장검출진단시스템: 등가관계 접근법 (Fault Detection and Isolation System for DC motor driven Centrifugal Pump-Pipe Systems: Parity Relation Approach)

  • 박태건;류지수;이기상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.819-821
    • /
    • 1998
  • This paper deals with a method or a residual generation for fault isolation in a centrifugal pump with a water circulation system, driven by a speed controlled dc motor. It is based on parity relations derived from the moving-average model of the system and is used to identify sensor faults and two possible brush and impeller faults, where the former is dealt with additive faults, while the latter characterized as discrepancies between the nominal and actual plant parameters of the system is modelled by multiplicative faults. We will represent the propagation of this uncertainty to the model matrices by the approximate handling of partial derivatives of polynomials. With multiplicative faults, the transformation matrix implemented in the residual generator are calculated on-line. The simulation studies demonstrate that small changes of the system can be detected and diagnosed by using the method.

  • PDF

유도기 설비의 휴대용 회전자 진단 시스템 연구 (A Study on the Potable Rotor Diagnosis System for Induction Machines)

  • 현두수;윤민한
    • 전기학회논문지
    • /
    • 제66권11호
    • /
    • pp.1657-1662
    • /
    • 2017
  • Rotor bar faults in induction machines, which are a part of main distribution of power system, can even stop the entire system by causing contact between a stator and a rotor. There are two methods of diagnosing rotor bar faults in induction motors, online and offline tests, and existing diagnosis methods have many limitations which can lead to misdiagnosis. This paper proposes a potable rotor bar faults diagnosis system based on single phase rotation test, one of offline test methods, which detects rotor bar faults through impedance interpretation by exciting AC current in a stator winding. The test was conducted on a motor of 0.4kW in the laboratory and a motor of 1500kW in industry field.

MUSIC-based Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors Using Flux Signal

  • Youn, Young-Woo;Yi, Sang-Hwa;Hwang, Don-Ha;Sun, Jong-Ho;Kang, Dong-Sik;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.288-294
    • /
    • 2013
  • The diagnosis of motor failures using an on-line method has been the aim of many researchers and studies. Several spectral analysis techniques have been developed and are used to facilitate on-line diagnosis methods in industry. This paper discusses the first application of a motor flux spectral analysis to the identification of broken rotor bar (BRB) faults in induction motors using a multiple signal classification (MUSIC) technique as an on-line diagnosis method. The proposed method measures the leakage flux in the radial direction using a radial flux sensor which is designed as a search coil and is installed between stator slots. The MUSIC technique, which requires fewer number of data samples and has a higher detection accuracy than the traditional fast Fourier transform (FFT) method, then calculates the motor load condition and extracts any abnormal signals related to motor failures in order to identify BRB faults. Experimental results clearly demonstrate that the proposed method is a promising candidate for an on-line diagnosis method to detect motor failures.

Fault Detection and Diagnosis System for a Three-Phase Inverter Using a DWT-Based Artificial Neural Network

  • Rohan, Ali;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권4호
    • /
    • pp.238-245
    • /
    • 2016
  • Inverters are considered the basic building blocks of industrial electrical drive systems that are widely used for various applications; however, the failure of electronic switches mainly affects the constancy of these inverters. For safe and reliable operation of an electrical drive system, faults in power electronic switches must be detected by an efficient system that is capable of identifying the type of faults. In this paper, an open switch fault identification technique for a three-phase inverter is presented. Single, double, and triple switching faults can be diagnosed using this method. The detection mechanism is based on stator current analysis. Discrete wavelet transform (DWT) using Daubechies is performed on the Clarke transformed (-) stator current and features are extracted from the wavelets. An artificial neural network is then used for the detection and identification of faults. To prove the feasibility of this method, a Simulink model of the DWT-based feature extraction scheme using a neural network for the proposed fault detection system in a three-phase inverter with an induction motor is briefly discussed with simulation results. The simulation results show that the designed system can detect faults quite efficiently, with the ability to differentiate between single and multiple switching faults.

LSTM based Supply Imbalance Detection and Identification in Loaded Three Phase Induction Motors

  • Majid, Hussain;Fayaz Ahmed, Memon;Umair, Saeed;Babar, Rustum;Kelash, Kanwar;Abdul Rafay, Khatri
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.147-152
    • /
    • 2023
  • Mostly in motor fault detection the instantaneous values 3 axis vibration and 3phase current in time domain are acquired and converted to frequency domain. Vibrations are more useful in diagnosing the mechanical faults and motor current has remained more useful in electrical fault diagnosis. With having some experience and knowledge on the behavior of acquired data the electrical and mechanical faults are diagnosed through signal processing techniques or combine machine learning and signal processing techniques. In this paper, a single-layer LSTM based condition monitoring system is proposed in which the instantaneous values of three phased motor current are firstly acquired in simulated motor in in health and supply imbalance conditions in each of three stator currents. The acquired three phase current in time domain is then used to train a LSTM network, which can identify the type of fault in electrical supply of motor and phase in which the fault has occurred. Experimental results shows that the proposed single layer LSTM algorithm can identify the electrical supply faults and phase of fault with an average accuracy of 88% based on the three phase stator current as raw data without any processing or feature extraction.

철도차량 견인전동기의 상태진단 및 상시감시 기술 (Condition Diagnosis & On-line Monitoring Technology on the Traction Motor for Railway Rolling Stock)

  • 왕종배;변윤섭;백종현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 제2회 학술대회 논문집 일렉트렛트 및 응용기술전문연구회
    • /
    • pp.36-39
    • /
    • 2000
  • This paper presents the technology of condition diagnosis & life estimation on insulation system of the traction motor. In the non-destructive methods for diagnosis of coil insulation state, residual dielectric strength is estimated by the D-map which consist of the partial discharge quantity Q and average degradation degree $\Delta$. In the operating history of machine, the N-Y life estimation method is based on the stop-starting numbers and operating times with considering each degradation factor by the thermal, electrical and heat-cycle stress. With the on-line conditioning monitoring on the currents of traction motors, detecting the abnormal operating state due to bearing faults, stator or armature faults, eccentricity related faults and broken rotor bars can be performed.

  • PDF

유도전동기 온라인 감시진단 시스템 개발 (Development of Online Monitoring System for Induction Motors)

  • 김기범;윤영우;황돈하;선종호;정태욱
    • 조명전기설비학회논문지
    • /
    • 제28권5호
    • /
    • pp.23-30
    • /
    • 2014
  • This paper presents an on-line diagnosis system for identifying health and faulted conditions in squirrel-cage induction motors using stator current, temperature, and partial discharge signals. The proposed diagnosis system can diagnose induction motor faults such as broken rotor bars, air-gap eccentricities, stator winding insulations, and bearing faults. Experimental results obtained from induction motors show that the proposed system is capable of detecting induction motor faults.

토크신호 스펙트럼 분석을 이용한 유도전동기 베어링 고장진단 (The Diagnosis for Induction Motor Bearing Faults Using Torque Signal Spectrum Analysis)

  • 김준영;양철오;박규남;송명현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1850-1851
    • /
    • 2011
  • The faults of a electric motor cause to rise the maintenance and repair cost and to reduce the reliability of the electric power system. In this paper, the auto fault detection system for a induction motor is developed using the torque signal spectrum analysis. The spectrum of motor torque signal is used for finding a bearing fault feature frequency. A threshold value, for detecting the motor bearing fault is set by the difference of torque signal spectrum(FFT signal) between normal condition and faulted condition of the motor.

  • PDF