• Title/Summary/Keyword: Motor driver

Search Result 400, Processing Time 0.033 seconds

Development of a Driver for BLDC Motors Using Smart Communication Platform (스마트 통신 플랫폼을 적용한 BLDC 모터 드라이버 개발)

  • Lee, Injae;Basnet, Barun;Bang, Junho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.868-872
    • /
    • 2016
  • This paper presents the design of a BLDC motor driver applicable to various valve control systems using smart devices. BLDC motors are relatively small in size and have better performance than other motors. They help in reducing maintenance cost, installation costs and power consumption in plant facilities. The proposed driver is specially designed for BLDC motors using Smart Communication Platform. It adds smart features in the valve control system using BLDC motors such as multi-management, control, networking and monitoring in real time with the help of smart devices.

The study on the design for a high Precision Linear DC Motor Driver in industry (고정밀 산업용 리니어 DC 모터 드라이버 설계에 관한 연구)

  • Ha, Keun-Soo;Im, Tae-Bin;Chung, Joong-Ki;Kim, Joo-Han
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3078-3080
    • /
    • 2000
  • In this paper. we designed a high precision Linear DC Motor(LDM) Driver with $120^{\circ}$ commutation method. It was composed of three parts which were divided into Power and Inverter Circuit. Analog Circuit with PWM Generation and Fault Protections. and Logic Circuit. We selected PMAC Controller by Delta Tau Co. for testifying a high accuracy of a designed driver. A high precision driver enhanced a response to changes of velocity and acceleration in motion and improved the accuracy.

  • PDF

A Scheme of Motor Control for Linux-based Quadcopter with Android Phone (안드로이드 폰을 이용한 리눅스 기반 쿼드콥터의 모터 제어 기법)

  • Rim, Seong-Rak;Kim, Du-Kyu
    • Journal of Information Technology Services
    • /
    • v.12 no.3
    • /
    • pp.379-387
    • /
    • 2013
  • This paper describes a scheme of motor control for Quadcopter with Android phone instead of a dedicated controller. Basically, user's requests (channel and speed) are inquired and transferred to the Quadcopter with Android phone, then the embedded Linux system receives them and controls the motor speed of corresponding channel. We have designed and implemented an App. for user interface and the modules of device driver and timer ISR for the motor control. Finally, we have up-loaded the App. and the modules to an Android (ver.4.0) phone and ARM processor (S3C6410)-based embedded board respectively, and reviewed the functional correctness by testing the motor control of Quadcopter.

Development of the linear motor driver with high speed and stiffness based on SERCOS (SERCOS 기반의 고속 고강성 이송시스템 드라이버 개발)

  • 최정원;김상은;이기동;박정일;이석규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.64-68
    • /
    • 1997
  • In this paper, a controller for the linear motor with high speed and stiffness is implemented using SERCOS interface which is a real time communication protocol between the numerical controller(NC) and the motor driver. The proposed controller is mainly composed of current, speed, and position controller, which are designed using the 32-bit DSP(TMS320C31), a high-integrated logic device (EPM7128), and Intelligent Power Module(IPM) to enhance reliability and compactness of the system. The experimental results show the effective performance of the proposed controller for he linear motor with high speed and stiffness.

  • PDF

Development of hybrid type linear motor and its driving system (Hybrid type linear motor의 개발과 구동)

  • Kim Moon-Hwan;Kim Soon-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.278-281
    • /
    • 2006
  • A Hybrid type LPM(Linear Pulse Motor) is designed as single side stator structure. Experimental results are shown that the static and dynamic characteristics. By the computer simulation, the permanent magnet design method is also clarified to desired thrust force. And microstep driver is adopted to the position controller to the designed LPM. The driver suppressed position errors within ${\pm}1501{\mu}m$.

  • PDF

THE SOLUTION OF HARDWARE OF ROBOT CONTROL SYSTEM (로봇 제어를 위한 시스템의 하드웨어 구성)

  • Bui-Quang, Duoc
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.474-479
    • /
    • 2004
  • This paper presents an economical solution of the control system of robot, which is widely applied to sophisticated robots. The proposed control system is built on a foundation that is combined between driver motor, PC controlled servo-motor control card, and driver software. The solution had been applied to design hardware of controlled 6-DOF (Degree Of Freedom) robot. The controlled system is used to control VML Robot (Vehicle Mechatronic Lab). Addition, because of flexibility of the solution, the controller can be suit with widely robots at used servo-moto.

  • PDF

CHARATERISTIC IMPROVEMENT OF 5 PHASE STEP MOTOR BY USING MICRO-STEP DRIVER IN X-Y AXIS SOLDERING MACHINE

  • Park, Chul-Soon;Kim, Sung-Hoon;Ahn, Ho-Kyun;Park, Seung-Kyu
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.97-100
    • /
    • 1998
  • In this paper, micro step driving method is used for the high performance motion control and low vibration and low noise in an X-Y axis soldering machine for factory automation. The improvement of the electrical and mechanical driving characteristic of a stepping motor is achieved by applying microstep driver.

  • PDF

A Study on the Micro Stepping Drive to reduce Vibration of Step motor (스텝모터의 진동 저감을 위한 마이크로 스텝 구동에 관한 연구)

  • 신규범;이정우;오준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.448-455
    • /
    • 1996
  • In this study, to reduce vibration of step motor we use Microstep control. Microstep control of stepmotor is usually thought of as an extension of conventional stepmotor control technology. The essence ofmicro stepping is that we divide the full step of a stepmotor into a number of substep called microstep and cause the stepmotor to move through a substep per input pulse. In ideal case, bycontrolling the individual phase currents of a two-phase step motor sinusoidally we can get uniform torque and step angles. But due to the monlinear characteristics of the step motor, we need to compensate current waveform to improve the overall smoothness of the conventional micro stepping system. We implement digital Pulse Width Modulation(PWM) driver to drive step motor and microphone was used for detecting vibration. Driver enables speed change automatically byincreasing or decreasing micro stepping ratio which we call Automatic Switching on the Fly. To compensate the torque harmonics, Neural Networks is applied to the system and we foundcompensated optimal input current waveform. Finally we can get smooth motion of step motor in a wide range of motor speed.

  • PDF

Dynamic Investigation of the Brushless DC Motor

  • Sirilappanich, Surachet;Somchaiwong, Nitipong;Pongswatd, Sawai;Ukakimapurn, Prapart
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1867-1870
    • /
    • 2003
  • The analysis and simulation are the method to study the behavior, response, and specification of the driver device. This paper proposes brushless DC drive which using the vector control technique. The encoder is used detect the rotor position and decode to Three-phase step signal. The step signal is modulated with triangle signal and change to the pulse width modulation (PWM) signal. The PWM signal is used for control the input power of the motor based on the vector control technique. The experimental results of the driver circuit and motor response performed under the following condition: as the motor was started, change the load torque, and vary the supply voltage. The experimental performs with a dynamometer and the test results are compared to the simulation method is the same result.

  • PDF

A study for the output power improvement DC servo driver to make remodeling back iron (Soft Magnetic Back Iron의 개선을 통한 servo driver 출력 향상을 위한 연구)

  • 최도순
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1999.12a
    • /
    • pp.693-700
    • /
    • 1999
  • The Servo motor is consistent with the magnet rotor, winding, magnetic back iron and the sensor. Especially the soft magnetic back iron in the servo motor, which consists of the magnet rotor and winding, and between these two components lies the magnetic circle. Its important to monitor the output power of to make conclusive decision for designs. In these days main household electrical appliances, business machinery and tools are made by process of miniaturization. Because of this miniaturization in hardware, miniaturization of the servo motor is essential But the decrease inside affects the power output. For improve of these has been several attempt at improving the power output of these smaller servo motors. There has been experiment in the servo motor composition, composing of the improvement of the soft magnetic back iron through comparison of the out put power plans are being made.

  • PDF