• Title/Summary/Keyword: Motor design methodology

Search Result 143, Processing Time 0.026 seconds

Single Phase Switched Reluctance Motor Optimum Design Using Response Surface Methodology and Finite Element Method (반응표면법과 유한요소법을 이용한 단상 스위치드 릴럭턴스 전동기의 최적 설계)

  • Lim, Seung-Bin;Choi, Jae-Hak;Park, Jae-Bum;Son, Yeoung-Gyu;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.596-607
    • /
    • 2006
  • This paper presents Single Phase Switched Reluctance Motor (SPSRM) optimum design for vacuum cleaners using Response Surface Methodology (RSM) to determine geometric parameters, and the 2-D Finite Element Method (FEM) has been coupled with the circuit equations of the driving converter. Additionally, an optimum process for SPSRM has been proposed and peformed with geometric and electric parameters thereby influencing the inductance variation and effective torque generation as design variables. SPSRM performances have also been analyzed to determine an optimal design model for maximized efficiency at high power factor. In order to confirm the propriety of the Finite Element Method and motor performance calculation, simulation waveform and experiment waveform for motor voltage and current were compared.

In-wheel Motor Design for an Electric Scooter

  • Lee, Ji-Young;Woo, Byung-Chul;Kim, Jong-Moo;Oh, Hong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2307-2316
    • /
    • 2017
  • The aim of this paper is to provide an optimal design of in-wheel motor for an electric scooter (E-scooter) considering economical production. The preliminary development in-wheel motor, which has a direct-driven outer rotor type attached to the E-scooter's rear wheel without any gear, is introduced first. The objective of the optimal design of this in-wheel motor is to improve the output characteristics of the motor and to have a stator form to facilitate automatic winding. Response surface methodology was used for the optimal design and 2-dimensional finite element method was used for electro-magnetic field analysis. Experimental results showed that the designed and fabricated in-wheel motor could satisfy the required specifications in terms of speed, power, efficiency, and cogging torque.

Design Space Methodology and Its Application in Interior Permanent Magnet Motor Design

  • Fan, Tao;Li, Qi;Wen, Xuhui;Xu, Longya
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.303-311
    • /
    • 2012
  • An innovative interpretation of the per-unit interior permanent magnet (IPM) machine model known as Design Space is presented in this paper. Based on the proposed Design Space formulation, an effective computation method to predict IPM machine performance factors, such as the current and power factor in a full range of speeds, is proposed. A systematic methodology is summarized, which translates the full speed range machine design procedure into the region determination on the so-called Design Space. The effect of dc-link voltage is also analyzed in a similar manner with the current and power factor. A series of IPM motors have been designed, and a preferred motor is selected with the help of the proposed Design Space Methodology (DSM), which has the best tradeoff between the nominal voltage and the dropped voltage condition. Experiment results show that the selected motor satisfies the machine requirements and all the design constrains, such as the current and back-EMF limitations.

Optimal Design of Multi-DOF Deflection Type PM Motor by Response Surface Methodology

  • Li, Zheng;Zhang, Lu;Lun, Qingqing;Jin, Hongbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.965-970
    • /
    • 2015
  • This paper uses response surface methodology as the optimization method of torque of multi-DOF deflection type PM motor. Firstly, the application of Taguchi algorithm selects structural parameters affecting the motor torque largely which simplifies the optimization process greatly. Then, based on the central composite design (CCD), response surface equation numerical model is constructed by the finite element method. With the aid of experiment design and analysis software, the effects of the interaction among factors on the index are analyzed. The results show that the analytical method is efficient and reliable and the experimental results can be predicted by response surface functions.

Optimal Geometric Design of Transverse Flux Linear Motor Using Response Surface Methodology (반응표면분석법을 이용한 횡자속 선형전동기의 형상최적설계)

  • Hong, Do-Kwan;Woo, Byung-Chul;Kang, Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.498-504
    • /
    • 2006
  • Thrust force of linear motor is one of the important factor to specify motor performance. In this study, we optimized maximizing the thrust force of TFLM(Transverse Flux Linear Motor) using Response Surface Methodology by the table of orthogonal way. The Response Surface Methodology was well adapted to make the analytical model of the maximum thrust force and enable the objective function to be easily created and a great deal of the time In computation to be saved. Therefore, it is expected that the proposed optimization procedure using the Response Surface Methodology can be easily utilized to solve the optimization problem of electric machine.

Optimal Geometric Design of Linear Motor Using Response Surface Methodology (반응표면분석법을 이용한 리니어모터의 형상최적설계)

  • Lee, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1262-1269
    • /
    • 2005
  • Thrust of linear motor is one of the important factor to specify motor performance. Maximum thrust can be obtained by increasing the current in conductor and is relative to the sizes of conductor and magnet. But, the current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find design results that can effectively maximize the thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and the temperature of the conductor was calculated by the thermal resistance. The diameter of copper wire among design variables has discrete value and number of turns must be integer. Considering these facts, special techinque for optimum design is presented. To reduce excessive computation time of thrust in optimization, the design variables was redefined by analysis of variance and second order regression model for thrust was determined by response surface metheodology. As a result, it is shown that the proposed method has an advantage in optimum design of linear motor.

Optimization of Magnet Pole of BLDC Motor by Experimental Design Method

  • Kim, Jee-Hyun;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.84-89
    • /
    • 2003
  • The finite element method (FEM) is typically used in the process of motor design. However, the FEM requires computation time, Therefore, decreasing the number of FEM simulations may also decrease the simulation cost. Several optimal design methods overcoming this problem have been recently studied. This paper investigates the optimal design of the magnet pole of a BLDC motor through reducing simulation cost. The optimization minimizes the magnet volume and limits the average and cogging torques to certain values. In this paper, the response surface methodology and Taguchi's table for reducing the number of FEM simulations are used to approximate two constraints. The optimization result shows that the presented strategy is satisfactorily performed.

Optimum Design of Axially Laminated Anisotropic Synchronous Reluctance Motor and Comparison of Characteristics with Induction Motor (축 방향 성층 이방성 동기형 릴럭턴스 전동기의 최적설계 및 유도전동기와의 특성 비교)

  • Lee, Pil-Won;Byen, Won-Gee;Lee, Jun-Ho;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.349-357
    • /
    • 2014
  • The performance of a Synchronous Reluctance Motor (SynRM) in terms of torque and power factor depends on the two-axis inductances $L_d$ and $L_q$ of the machine. The Axially Laminated Anisotropic (ALA) rotor should be proposed in an effort to increase the $L_d/L_q$ ratio and the $L_d-L_q$ difference to secure high torque density and high power factor. So, ALA rotor is suitable for high speed instruments. This paper deals with optimum design of Axially Laminated Anisotropic Synchronous Reluctance Motor (ALA-SynRM) and comparison of characteristics with induction motor. Coupled Finite Element Methodology (FEM) & Response Surface Methodology (RSM) have been used to evaluate optimum design solutions. Comparisons are given with characteristics of a same rated wattage induction motor and those of ALA-SynRM respectively.

Characteristic Analysis and Design of a Single Phase Switched Reluctance Motor for High Speed Application

  • Kim, Youn-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.114-121
    • /
    • 2004
  • Switched reluctance motors have received much attention as a driving means for various industrial applications because they have simple construction, low cost and high efficiency. Nevertheless, the requirements of drive converters make it difficult to lower the overall system cost as compared with the DC motor application. Single phase switched reluctance motors (SPSRMs) provide a solution to the high cost problem since the number of switching power devices can be reduced and consequently the trials for application are increased. However, research involving SPSRMs, especially in the area of design work, is insufficient. This paper introduces a novel design methodology of single phase SRM. The design work for SPSRM comprises the determination of many variables such as stator and rotor pole arc as well as on, off and so on. Managing all variable combinations leads to lengthy computation time and a fault in the design process. For that reason, a reliable technique and brief procedure term are required in SPSRM design.

Optimum Design Criteria for Maximum Torque Density and Minimum Torque Ripple of Flux Switching Motor using Response Surface Methodology

  • Lee, Jung-Ho;Lee, Tae-Hoon
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.74-77
    • /
    • 2010
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of a Flux Switching Motor (FSM) using response surface methodology (RSM) & finite element method (FEM). The focus of this paper is to find a design solution through the comparison of torque density and torque ripple which vary with rotor shape. And then, a central composite design (CCD) mixed resolution was introduced and analysis of variance (ANOVA) was conducted to determine the significance of the fitted regression model. The proposed procedure allows one to define the rotor dimensions, starting from an existing motor or a preliminary design.