• Title/Summary/Keyword: Motor Unit

Search Result 586, Processing Time 0.031 seconds

A Study on the Matlab Modeling and Control Algorithm of 8200 Electric Locomotive (8200대 전기기관차 Matlab 모델링 및 제어 알고리즘에 관한 고찰)

  • Lee, Hwan;Jung, No-Geon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.216-221
    • /
    • 2017
  • In this paper, the converter and traction system of 8200 electric locomotive is modeled using matlab simulation module. And the characteristic was analyzed through simulation of the combined system of converter and inverter for controling 8200 electric locomotive. The validity of the simulation was proved through performing unit power factor control of converter and speed control of inverter.

Development Characteristics of a Power Conversion System in a Maglev (시험용 자기부상열차의 전력변환장치 개발 특성)

  • Song, Byeong-Mun;Hong, Jun-Pyo;Kim, Ki-Hoi;Oh, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.718-720
    • /
    • 1993
  • Power conversion system for a magnetically levitated vehicle consists of propulsion inverter to drive linear motor, levitation chopper to drive magnet and power source unit. This paper presents the characteristics of power conversion system in prototype Maglev system. In order to improve performance of electrical equipment IGBT is adopted in a main circuit. Audible noise is reduced to below 60 dB and size is also reduced to 1/3. This system is verified through experiment.

  • PDF

Characterisitic Analysis of Single Phase SRM Considering Rotor Shape (회전자 형상에 따른 단상 SRM의 특성 해석)

  • Lee, Jong-Han;Lee, Eun-Woong;Kim, Jun-Ho;Jo, Yeon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1321-1323
    • /
    • 2005
  • SRM has a characteristic of a robust, simple structure and wide operating ranges. So, recently it has studied and developed in many kinds and forms with the technology of power electronics and analysis and design by use of computer. Also, It is used in a very wide range of industrial applications. In particular, single phase switched reluctance motor has a merit in practical use because it has simple operating drives and control systems, very high energy density per unit volume comparing with three phase SRM. But it must have a starting device. In this paper, the shapes of the single phase SRM rotor are designed to reduce the torque ripple, to improve the efficiency.

  • PDF

An Analysis on the Equivalent Circuit and the Accelerating Characteristics of Single Sided Linear Induction Motor (편측식(片側式) 선형유도전동기(線型誘導電動機)의 등가회로 구성과 가속특성(加速特性) 해석)

  • Jang, S.M.;Park, C.I.;Kim, G.T.;Kim, Y.R.;Kim, B.S.;Jung, Y.U.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.180-182
    • /
    • 1995
  • The equivalent circuit of SLIM is composed of the circuit parameters. They can be obtained from the electromagnetic theory. The accelerating characteristics of SLIM are the best efficiency when synchronous speed changed continuously. The paper outlines a method of acceleration for an accelerated field system in which it is desired to reduce the overall length to a minimum, assuming a limit on the amount of heat which can be generated in the secondary member. The paper then shows that a primary unit designed to give several discrete field speeds only, as opposed to one with continuous speed variation, is not significantly inferior in performance to the latter but is much easier to manufacture.

  • PDF

Application of Controller Area Network to Humanoid Robot (휴머노이드 로봇에 대한 CAN(Controller Area Network) 적용)

  • Ku, Ja-Bong;Huh, Uk-Youl;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.77-79
    • /
    • 2004
  • Because robot hardware architecture generally is consisted of a few sensors and motors connected to the central processing unit, this type of structure is led to time consuming and unreliable system. For analysis, one of the fundamental difficulties in real-time system is how to be bounded the time behavior of the system. When a distributed control network controls the robot, with a central computing hub that sets the goals for the robot, processes the sensor information and provides coordination targets for the joints. If the distributed system supposed to be connected to a control network, the joints have their own control processors that act in groups to maintain global stability, while also operating individually to provide local motor control. We try to analyze the architecture of network-based humanoid robot's leg part and deal with its application using the CAN(Controller Area Network) protocol.

  • PDF

Wide-Range Mapping Methodology for Unmanned Ground Vehicle Based on DGPS (무인자율차량 적용을 위한 DGPS 기반 전역지도 작성기법)

  • Shon, Woong-Hee;Yu, Seung-Nam;Kim, Young-Il;Han, Chang-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.2
    • /
    • pp.85-92
    • /
    • 2010
  • This study shows the path generation algorithm for an UGV (Unmanned Ground Vehicle). The developed UGV frame which has a 4-wheel driven mechanism and diesel source is applied. Proposed vehicle system in this research is aimed to military purpose. To achieve the unmanned autonomous driving, following two main issues are considered. First, behavior module for positioning and posture of vehicle system and second, cognition module to receive the information from environment are proposed and verified. To do this, rover which can acquire the positioning information from earth coordinate and IMU (Inertial Measurement Unit) which can measure the posture are combined to design the path planning algorithm.

  • PDF

Non-Operative Management of Traumatic Gallbladder Bleeding with Cystic Artery Injury: A Case Report

  • Kim, Tae Hoon
    • Journal of Trauma and Injury
    • /
    • v.34 no.3
    • /
    • pp.208-211
    • /
    • 2021
  • Gallbladder injuries are rare in cases of blunt abdominal trauma and are usually associated with damage to other internal organs. If the physician does not suspect gallbladder injury and check imaging studies carefully, it may be difficult to distinguish a gallbladder injury from gallbladder stone, hematoma, or bleeding. Therefore, in order not to miss the diagnosis, the clinical findings and correlation should be confirmed. In the present case, a 60-year-old male presented to a local trauma center complaining of pain in the upper right quadrant and chest wall following a motor vehicle collision. Abdominal computed tomography (CT) showed a hepatic laceration and hematoma in the parenchyma in segments 4, 5, and 6 and active bleeding in the lumen of the gallbladder. Traumatic gallbladder injuries generally require surgery, but in this case, non-operative management was possible with cautious follow-up consisting of abdominal CT and angiography with repeated physical examinations and hemodynamic monitoring in the intensive care unit.

Recurrence of Minimal Change Disease Following a Motor Vehicle Trauma: An Atypical Cause and Review of Literature

  • Depa, Jayaramakrishna;Coritsidis, George
    • Journal of Trauma and Injury
    • /
    • v.32 no.2
    • /
    • pp.111-114
    • /
    • 2019
  • Minimal change disease (MCD) in children has a favorable long-term prognosis, and development of end-stage renal disease is very uncommon; less than 5%. In the first case of its kind, we report a 21-year-old female with a history of MCD at the age of 6, who had late relapse subsequent to a motorcycle accident resulting in a de-gloving skin injury and intensive care unit admission. MCD was confirmed by normal light microscopy, podocyte effacement on electron microscopy and absence of any deposits on immunofluorescence 3 weeks after the incident due to critical illness. It is postulated that the skin injury is what caused the relapse of MCD.

Exploration of Motion Prediction between Electroencephalography and Biomechanical Variables during Upright Standing Posture (바로서기 동작 시 EEG와 역학변인 간 동작 예측의 탐구)

  • Kyoung Seok Yoo
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.2
    • /
    • pp.71-80
    • /
    • 2024
  • Objective: This study aimed to explore the brain connectivity between brain and biomechanical variables by exploring motion recognition through FFT (fast fourier transform) analysis and AI (artificial intelligence) focusing on quiet standing movement patterns. Method: Participants included 12 young adult males, comprising university students (n=6) and elite gymnasts (n=6). The first experiment involved FFT of biomechanical signals (fCoP, fAJtorque and fEEG), and the second experiment explored the optimization of AI-based GRU (gated recurrent unit) using fEEG data. Results: Significant differences (p<.05) were observed in frequency bands and maximum power based on group and posture types in the first experiment. The second study improved motion prediction accuracy through GRU performance metrics derived from brain signals. Conclusion: This study delved into the movement pattern of upright standing posture through the analysis of bio-signals linking the cerebral cortex to motor performance, culminating in the attainment of motion recognition prediction performance.

Development of Chip-based Precision Motion Controller

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1022-1027
    • /
    • 2003
  • The Motion controllers provide the sophisticated performance and enhanced capabilities we can see in the movements of robotic systems. Several types of motion controllers are available, some based on the kind of overall control system in use. PLC (Programmable Logic Controller)-based motion controllers still predominate. The many peoples use MCU (Micro Controller Unit)-based board level motion controllers and will continue to in the near-term future. These motion controllers control a variety motor system like robotic systems. Generally, They consist of large and complex circuits. PLC-based motion controller consists of high performance PLC, development tool, and application specific software. It can be cause to generate several problems that are large size and space, much cabling, and additional high coasts. MCU-based motion controller consists of memories like ROM and RAM, I/O interface ports, and decoder in order to operate MCU. Additionally, it needs DPRAM to communicate with host PC, counter to get position information of motor by using encoder signal, additional circuits to control servo, and application specific software to generate a various velocity profiles. It can be causes to generate several problems that are overall system complexity, large size and space, much cabling, large power consumption and additional high costs. Also, it needs much times to calculate velocity profile because of generating by software method and don't generate various velocity profiles like arbitrary velocity profile. Therefore, It is hard to generate expected various velocity profiles. And further, to embed real-time OS (Operating System) is considered for more reliable motion control. In this paper, the structure of chip-based precision motion controller is proposed to solve above-mentioned problems of control systems. This proposed motion controller is designed with a FPGA (Field Programmable Gate Arrays) by using the VHDL (Very high speed integrated circuit Hardware Description Language) and Handel-C that is program language for deign hardware. This motion controller consists of Velocity Profile Generator (VPG) part to generate expected various velocity profiles, PCI Interface part to communicate with host PC, Feedback Counter part to get position information by using encoder signal, Clock Generator to generate expected various clock signal, Controller part to control position of motor with generated velocity profile and position information, and Data Converter part to convert and transmit compatible data to D/A converter.

  • PDF