• Title/Summary/Keyword: Motor Unit

Search Result 586, Processing Time 0.023 seconds

Development of Hanging Type Circular-patterned System for Strawberry Cultivation (행거식 순환형 딸기 재배시스템 개발)

  • Sewoong An;Dong Eok Kim;Soonjung Hong;Dong Hyeon Kang
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.26 no.2
    • /
    • pp.25-30
    • /
    • 2024
  • This study was conducted to develop the hanging type circular-patterned system that at maximizing the spatial efficiency of strawberry cultivation to increase yields, while also reducing labor and improving energy efficiency. The system consists of a cultivation bed units, longitudinal moving device, bed lifting device, front and rear transfer devices, lateral transfer device, nutrient supply device, and control unit. Performance testing revealed that the operational motor for longitudinal movement should have a torque of at least 0.1Nm based on the design weight and traction force of the cultivation bed unit. The power consumption required to move one cycle was calculated to be approximately 149Wh when performing harvesting or maintenance tasks for all 10 cultivation beds. Vibration angles measured during bed movement showed that the lateral transfer resulted in a roll angle ranging from -0.62° to 0.68° and a pitch angle ranging from -3.79° to 5.26°. For longitudinal transfer, the roll angle ranged from -3.37° to 3.36°, and the pitch angle ranged from -0.45° to 0.49°.

Development of Parking Space Forecast Model for Large Traffic-inducing Facilities Considering Surrounding Circumstance (주변 환경을 고려한 대규모 교통유발시설 주차면산정 모형개발에 관한 연구 - 판매시설을 중심으로 -)

  • Park, Je jin;Oh, Seok Jin;Kim, Sung Hun;Ha, Tae Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.593-601
    • /
    • 2017
  • With the rapid industrial development and national economic advance since 1970, the national income of Korea has sharply increased. As a result, issues regarding city expansion, urban concentration, increase in the number of registered motor vehicles, and increase in traffic have caused transportation issues such as traffic congestion and problems with parking. Especially, enforcement ordinances and rules have been established on installation and management of parking lots to solve problems with parking which are raised as social problems such as conflict with neighbors but the flexible calculation of legal parking space has the limitations because of the diversity and complex functionality of purposes of facilities. Accordingly, this study attempted to supplement such demerit of the parking space demand forecast method based on the legally required number of parking spaces and average unit requirement in the parking space supply. This study estimated the required number of parking spaces by analyzing existing literature, collecting field research data, and analyzing the factors that have an impact on the parking demand. Also, it compared the required number of parking spaces based on the average unit requirement as well as the required number of parking spaces by the forecast model based on the cumulative number of motor vehicles parked. The result was that the required number of parking space based on average unit requirement was less than the cumulative number of motor vehicles parked by 9.99%. Meanwhile, the required number of parking spaces by the forecast model was more than the cumulative number of motor vehicles parked by 4.37%. Therefore, it is believed that the parking space forecast model is more efficient than the others in estimating there quired parking space. The parking space forecast model of this study consider different environmental factors to enable practical parking demand forecast considering the local characteristics and thus supply the parking space in an efficient way.

A System Development for Remotely Controlling Windows and Doors in Mobile Environment (모바일 환경에서의 원격 창호 관제시스템 개발)

  • Cho, Yong-Hyun;Ryu, Sung-Won;Ahn, Kyung-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.334-341
    • /
    • 2015
  • This paper develops a new system for remotely monitoring and controlling the windows and doors in mobile environment. We design and implement the opening and shutting unit, the gateway, and the control server system, respectively. The opening and shutting unit consists of the driver using DC motor and the motion controller which monitors the state and transfers the control information. The gateway supports TCP/IP and CDMA protocol, which is the interface of wire and wireless communication for transferring the current state and control information. The control server consists of the program to store and process the control information, the middleware to support the processing of various state message, and DB for monitoring the state and remotely controlling the system. Especially, an application software and the Web-based user interface have also been developed to support the mobile environment. The operation performances, environment influences, driving persistences, and operation failure ratio, which are based on PC and smart-phone, have been tested in 2 authorized agencies. The test results show that the developed system has a superior performance.

Potential Explosion Risk Comparison between SMR and DMR Liquefaction Processes at Conceptual Design Stage of FLNG (FLNG개념설계 단계에서 SMR 및 DMR 액화공정의 잠재적 폭발위험도 비교)

  • You, Wonwo;Chae, Minho;Park, Jaeuk;Lim, Youngsub
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.95-105
    • /
    • 2018
  • An FLNG (floating liquefied natural gas) or LNG FPSO (floating production, storage and offloading) unit is a notable offshore unit with the increasing demand for LNG. The liquefaction process on an FLNG unit is the most important process because it determines the economic feasibility, but would be a hazard source because of the large quantity of hydrocarbons. While a high efficiency process such as C3MR has been preferred for onshore liquefaction processes, a relatively simple process such as the SMR (single mixed refrigerant) or DMR (dual mixed refrigerant) liquefaction process has been selected for offshore units because they require a more compact size, lighter weight, and higher safety due to their space limitation for facilities and long distance from shore. It is known that an SMR has the advantages of a simple configuration, small footprint, and lower risk. However, with an increased production rate, the inherent safety of SMR needs to be evaluated because of its small train capacity. In this study, the potential explosion risks of the SMR and DMR liquefaction processes were evaluated at the conceptual design stage. The results showed that an SMR has a lower overpressure than a DMR at the same frequency, only with a small production capacity of 0.9 MTPA. With increased capacity, the overpressure of the SMR was higher than that of the DMR. The increased number of trains increased the frequency in spite of the small amount of equipment per train. This showed that the inherent risk of an SMR is not always lower than that of a DMR, and an additional risk management strategy is recommended when an SMR is selected as the concept for an FLNG liquefaction process compared to the DMR liquefaction process.

Standard Wire Harness Designs in Commercial Vehicles Based on Control Types and Functional Blocks (동작 방식과 기능별 회로 분류에 기반한 상용차 배선 회로 표준화 방안)

  • Lim, Hansang;Bae, Seung-Deuk;Jung, Do Hwan;Jeong, Hyun Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.96-105
    • /
    • 2013
  • This paper presents a standardization method for designing wire harness systems, based on the control types and functional blocks, for use in commercial vehicles. With a rapid increase in the installation of systems with added new features, it is very important to develop a reliable wire harness design in a short time by standardizing wire harness designs and reusing the standard design. Because the function of a system, particularly, for commercial vehicles, varies significantly on the basis of the requirements, regulations, and options, it is not effective to establish one standard design for one system. In addition, a system with the same function may differ in terms of the input conditions and output loads on the basis of the installed vehicle types, and it is not practical to standardize a harness design targeting an entire system. In this study, the wire harness designs of a system were classified into six categories based on the control types of the system: switch driven, control of a switch, control of an electronic control unit, unit driven, control of a unit, and connector operation. Then, a wire harness design of each system was divided into three blocks according to their functions: the control, drive, and monitoring blocks. The standard wire harness designs were made for each functional block of each control type. The advantage of this proposed method is that an effective and practical design can be obtained, which covers the diversities in the same system for different grades of commercial vehicles with a reduction in the number of wire harness supplements.

A Preliminary Study of the Effect of Kegel Exercise Using a Pressure Biofeedback Unit on Maximum Voluntary Ventilation and Abdominal Muscle Thickness (압력 생체되먹임 기구를 이용한 케겔 운동이 최대 수의적 환기량과 배 근육 두께에 미치는 사전 연구)

  • Lee, Kyung-Soon;Park, Kang-Hui;Park, Han-Kyu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.1
    • /
    • pp.81-89
    • /
    • 2022
  • Purpose : Kegel exercises reported that it is effective in managing stress-related or complex urinary incontinence through contraction and relaxation of the pelvic floor muscles. In many previous studies, it was confirmed that Kegel exercise is involved in respiration as well as urinary system diseases. However, there is a lack of research on the effect of pelvic setting when performing Kegel exercises. Therefore, this study was conducted to investigate the effect on maximum voluntary ventilation (MVV) and abdominal muscle thickness through Kegel exercise after lumbar-pelvic motor control using pressure biofeedback unit (PBU). Methods : The subjects of this study were 10 healthy female students in their 20s. Subjects measured MVV with a spirometer. In hooklying, external oblique, internal oblique, and transverse abdominis of the dominant hand were measured using ultrasound. The measured value was an average of three times. After one week of intervention, measurements were made in the same manner. Before Kegel exercise, pelvic setting training was performed using PBU. In hooklying, PBU was placed in the waist and set to 40 mmHg, and it was adjusted to 60 mmHg through pelvic muscle contraction. For Kegel exercise, the pelvis was first set using PBU, and then the pelvic floor muscles were contracted for 8 seconds and relaxed for 8 seconds, 10 times, 1 set, and 3 sets. Results : In MVV, a significant difference was confirmed after exercise than before exercise (p<.05). There was also a significant difference in abdominal muscle thickness before and after exercise (p<.05). Conclusion : Based on the results of this study, Kegel exercise using PBU had an effect on MVV and abdominal muscle thickness. However, since this study was conducted without a control group as a preliminary study, additional research should be conducted to supplement this.

Performance Evaluation of a Driving Power Transmission System for 50 kW Narrow Tractors

  • Hong, Soon-Jung;Ha, Jong-Kyou;Kim, Yong-Joo;Kabir, Md. Shaha Nur;Seo, Young Woo;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • Purpose: The development of compact tractors that can be used in dry fields, greenhouses, and orchards for pest control, weeding, transportation, and harvesting is necessary. The development and performance evaluation of power transmission units are very important when it comes to tractor development. This study evaluates the performance of a driving power transmission unit of a 50 kW multi-purpose narrow tractor. Methods: The performance of the transmission and forward-reverse clutch, which are the main components of the driving power transmission unit of multi-purpose narrow tractors, was evaluated herein. The transmission performance was evaluated in terms of power transmission efficiency, noise, and axle load, while the forward-reverse clutch performance was evaluated in terms of durability. The transmission's power transmission efficiency accounts for the measurement of transmission losses, which occur in the transmission's gear, bearing, and oil seal. The motor's power was input in the transmission's input shaft. The rotational speed and torque were measured in the final output shaft. The noise was measured at each speed level after installing a microphone on the left, right, and upper sides. The axle load test was performed through a continuous equilibrium load test, in which a constant load was continuously applied. The forward-reverse clutch performance was calculated using the engine torque to axle torque ratio with the assembled engine and transmission. Results: The loss of power in the transmission efficiency test of the driving power unit was 6.0-9.7 kW based on all gear steps. This loss of horsepower was equal to 11-18% of the input power (52 kW). The transmission efficiency of the driving power unit was 81.5-89.0%. The noise of the driving power unit was 50-57 dB at 800 rpm, 70-77 dB at 1600 rpm, and 76-83 dB at 2400 rpm. The axle load test verified that the input torque and axle revolutions were constant. The results of the forward-reverse clutch performance test revealed that hydraulic pressure and torque changes were stably maintained when moving forward or backward, and its operation met the hydraulic design standards. Conclusions: When comprehensively examined, these research results were similar to the main driving power transmission systems from USA and Japan in terms of performance. Based on these results, tractor prototypes are expected to be created and supplied to farmhouses after going through sufficient in-situ adaptability tests.

Development of Defect Inspection System for Polygonal Containers (다각형 용기의 결함 검사 시스템 개발)

  • Yoon, Suk-Moon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • In this paper, we propose the development of a defect inspection system for polygonal containers. Embedded board consists of main part, communication part, input/output part, etc. The main unit is a main arithmetic unit, and the operating system that drives the embedded board is ported to control input/output for external communication, sensors and control. The input/output unit converts the electrical signals of the sensors installed in the field into digital and transmits them to the main module and plays the role of controlling the external stepper motor. The communication unit performs a role of setting an image capturing camera trigger and driving setting of the control device. The input/output unit converts the electrical signals of the control switches and sensors into digital and transmits them to the main module. In the input circuit for receiving the pulse input related to the operation mode, etc., a photocoupler is designed for each input port in order to minimize the interference of external noise. In order to objectively evaluate the accuracy of the development of the proposed polygonal container defect inspection system, comparison with other machine vision inspection systems is required, but it is impossible because there is currently no machine vision inspection system for polygonal containers. Therefore, by measuring the operation timing with an oscilloscope, it was confirmed that waveforms such as Test Time, One Angle Pulse Value, One Pulse Time, Camera Trigger Pulse, and BLU brightness control were accurately output.

Mechatronic Control Model of the Wind Turbine with Transmission to Split Power

  • Zhang Tong;Li Wenyong;Du Yu
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.533-541
    • /
    • 2005
  • In this paper, a wind turbine with power splitting transmission, which is realized through a novel three-shaft planetary, is presented. The input shaft of the transmission is driven by the rotor of the wind turbine, the output shaft is connected to the grid via the main generator (asynchronous generator), and the third shaft is driven by a control motor with variable speed. The dynamic models of the sub systems of this wind turbine, e.g. the rotor aerodynamics, the drive train dynamics and the power generation unit dynamics, were given and linearized at an operating point. These sub models were integrated in a multidisciplinary dynamic model, which is suitable for control syntheses to optimize the utilization of wind energy and to reduce the excessive dynamic loads. The important dynamic behaviours were investigated and a wind turbine with a soft main shaft was recommend.

Calculation of Bar Currents and Torque for Single Phase Induction Motor (단상 유도전동기의 전류 및 토크 계산 기법)

  • Kim, Young-Sun;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.867-869
    • /
    • 2002
  • A method for the time step analysis of single phase induction motors is proposed. The unknown variables in differential equations are the currents flowing through rotor bars. They are coupled with the distributed magnetic flux densities in the airgap instead of inductance matrix while applying Kirchhoff's and Faraday's induction laws. Two patterns for magnetic flux densities are necessary. One is given by ideal stator winding distribution. the other is produced by currents flowing a rotor bar with unit magnitude and is calculated by FEM. Formulated set of equations are solved for a simple three phase and single phase example model and the resultant speed torque curve is shown in this paper.

  • PDF