• Title/Summary/Keyword: Motor Torque Analysis

Search Result 899, Processing Time 0.031 seconds

Dynamic Characteristics Analysis of Flat-type Vibration Motor for Mobile Phone (휴대폰용 평편형 진동모타의 동특성 해석)

  • Won, Sung-Hong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.31-33
    • /
    • 2004
  • In order to simulate the dynamic characteristics, we have developed a new method of calculating the torque of the flat-type vibration motor which is using 2D finite element model. We have measured the load torque of the vibration motor which is used for the dynamic characteristics analysis. The simulated vibration characteristic is compared with experimental value.

  • PDF

Robust Adaptive Precision Position Control of PMSM

  • Ko Jong-Sun;Ko Sung-Hwan;Kim Yung-Chan
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.347-355
    • /
    • 2006
  • A new control method for precision robust position control of a permanent magnet synchronous motor (PMSM) is presented. In direct drive motor systems, a load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in using a fixed gain to solve this problem. However, the motor flux linkage cannot be determined precisely for a load torque observer. Therefore, an asymptotically stable adaptive observer base on a deadbeat observer is considered to overcome the problems of unknown parameters, torque disturbance and a small chattering effect. To find the critical parameters the system stability analysis is carried out using the Liapunov stability theorem.

Analysis of the Eccentric Characteristics of the Brushless Motor by the Rotor Structure (회전자 구조에 따른 브러시리스 모터 편심 특성 분석)

  • Son, Byoung-Ook;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.156-163
    • /
    • 2010
  • The brushless motor is getting widely applied to the automotive component with the advantage of the high efficiency, high reliability and etc.. Most of the motor applications require the low vibration and acoustic noise. The cogging torque is the one of the main cause of the noise and vibration. The step-skewed rotor is used to reduce the cogging torque. We analyze the characteristics of the step-skewed rotor and non skewed rotor with the same stator by using 2-dimensional FEM. And then we analyze the characteristics variation according to the rotor eccentricity. The prototype is made and tested. As the results, the step-skewed rotor structure reduce the cogging torque and local radial force but it is more sensitive to rotor eccentricity.

MTPA Control of Induction Motor Drive using Fuzzy-Neural Networks Controller

  • Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1474-1477
    • /
    • 2005
  • This paper is proposed maximum torque per ampere of induction motor using fuzzy-neural networks controller. Operation of maximum torque per ampere is achieved when, at a given torque and speed, the slip frequency is adjusted to that so that the stator current amplitude is minimized. This paper introduces a induction motor drive system with fuzzy-neural networks controller. A neural network-based architecture is described for fuzzy logic control. The characteristic rule and their membership function of fuzzy system are represented as the processing nodes in the neural network structure. This paper is proposed the analysis as well as the simulation results to verify the effectiveness of the new method.

  • PDF

Rotor Shape Design of an Interior PM Type BLDC Motor for Improving Mechanical Vibration and EMI Characteristics

  • Hur, Jin;Kim, Byeong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.462-467
    • /
    • 2010
  • This paper presents the rotor shape optimization of an interior type permanent magnet (IPM) motor for a reduction of vibration and Electromagnetic Interference (EMI). The vibration and EMI in permanent magnet motors is generated by cogging torque ripple, radial force and commutation torque ripple. Consequently, in order to improve vibration and EMI, the optimal notches are put on the rotor pole with an arc shape proposed. The variation of vibration frequency due to the cogging torque and radial force of each model is computed by the finite element method (FEM). From the analysis result and experiment, we confirmed the proposed model has remarkably improved the vibration and EMI.

Optimizing Notch to reduce Cogging Torque of IPM motor (IPM 모터의 코깅토크 저감을 위한 노치 최적화)

  • Han, Kwang-Kyu;Kang, Gyu-Hong;Ahn, Young-Gyu;Lee, Dong-Yeup;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.880-881
    • /
    • 2007
  • By reason of variation magnetic field, cogging torque is generated. Cogging torque of IPM is bigger than other type permanent magnet motor. So, this paper presents a Optimizeing notch to reduce cogging torque of interior type permanent magnet(: IPM) motor. Through Fourier formulation of magnetic field on rotor, we found position of notch and manufactured armature that is designed by optimizing analysis. The validity of the proposed design is confirmed with experiments.

  • PDF

Torque Characteristics Analysis of Harmonic Side Drive Motor by Conformal Mapping (등각사상에 의한 하모닉 모터의 토오크 특성 해석)

  • Yun, Seo-Jin;Lee, Eun-Ung;Lee, Dong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.104-109
    • /
    • 1999
  • In order to design and predict the performance of the harmonic side drive motor, it is necessary to analyze the torque generated by the structure. In this paper, an analytical model is proposed for design. Conformal mapping is used to model the capacitance and torque of the motor as a function of the rotor angular position with two-dimensional approximation. Then the result of conformal mapping analysis is verified with F.E.M result.

  • PDF

Rotor Design of a Segmented Type Synchronous Reluctance Motor to Improve Torque and Power Factor (단편형 동기 릴럭턴스 전동기의 토크 및 열률 개선을 위한 회전자 설계)

  • Jang, Seok-Myeong;Park, Byeong-Im;Lee, Seong-Ho;Lee, Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.6
    • /
    • pp.263-272
    • /
    • 2001
  • The paper presents the design of a segmented type synchronous reluctance motor(SynRM) to increase its torque and power factor. The main feature of a segmented type synchronous reluctance motor is the flux barrier. Thus, the design process to find optimum value of various geometric parameters including flux barrier will be explained. Optimum value of each parameter is found where the d, q inductance difference and saliency ratio are maximized because these inductance characteristics are related to torque and power factor. Finite Element Analysis will be used to simulate motor characteristics. Analysis results of redesigned SynRM show higher saliency ratio over 10 and improved value of maximum power factor.

  • PDF

A Drive Method of SRM for EPS with High Efficiency & Low Torque Ripple (EPS용 SRM의 고효율 저토크리플 구동방식)

  • Hwang H.J.;Moon J.W.;Kim J.K.;Ahn J.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.832-835
    • /
    • 2003
  • This paper presents a design and characteristics analysis of a SRM drive for EPS(Electrically Power Steering) application. A conventional driving room space and mechanical structure are suggested in design stage. In the restricted design conditions, motor parameters are determined for sufficient torque and speed. For the smooth torque generation and simple circuit of power system, 12/8 motor drive is considered. With FEM and magnetic circuit analysis, designed motor is simulated to meet the requirement of specifications. Effectiveness of the suggested SRM drive for EPS application is verified by the manufactured prototype motor drive tests.

  • PDF

Analysis of the torque transient performance of the induction motor by means of phase segregation method (상분리법에 의한 유도전동기의 토오크 과도특성해석)

  • Jeong, Jong-Ho;Lee, Eun-Woong;Choi, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.247-249
    • /
    • 2000
  • Transient phenomena cause delay in control response and must be studied and eliminated, if possible, suppressed. The difficulty in analyzing transient phenomena in ac machines comes from the large number of windings involved. But, it is possible that only one phase is used to represent three phases of the induction motor as called phase segregation method. The phase segregation method provides equivalent circuits for both the steady and transient states of induction motor. In this paper, analysis of the torque transient of the induction motor be carried out the phase segregation method and confirmed in the possibility of transientless torque control.

  • PDF