• 제목/요약/키워드: Motor Spring

검색결과 156건 처리시간 0.026초

모터스프링의 정밀 벤딩 성형에 관한 연구 (Studies on Precision Bending of Motor Spring)

  • 박세제;이상곤;김동환
    • 소성∙가공
    • /
    • 제25권6호
    • /
    • pp.366-372
    • /
    • 2016
  • Recently, the amount of spring usage is on the increase in the automotive and aircraft parts industries as well as home appliances. Manufacture of spring reflects a need for diversification, mass production and high precision. Therefore it is very important to know the bending method and forming technique according to the shape of spring. In this study, to find the optimal bending method for the motor spring, the FE-simulation was executed using orthogonal array. The design parameters are wire length, length of vibration and feed rate. Then, the optimal combination of design parameters was suggested using ANN technique.

충격에 강인한 폴리곤 미러 스캐너 모터의 판 스프링 설계 (Robust Design of Leaf Spring of a Polygon Mirror Scanner Motor Against Shock)

  • 이상욱;김명규;정경문;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.515-520
    • /
    • 2008
  • This paper develops a mite element model of a polygon mirror scanner motor supported by the sintered bearing and flexible supporting structures to analyze the shock response by using the finite element method and the mode superposition method. The validity of the proposed model is verified by comparing the simulated natural frequencies and shock response with the experimental ones. It investigates the displacement and the stress of the most vulnerable component, i.e. a leaf spring due to shock, and it proposes a robust design of leaf spring of a polygon mirror scanner motor against shock.

  • PDF

공진형 선형 액추에이터의 스프링 강성 변화에 따른 과도응답특성 (Transient Response Characteristic of a Linear Actuator in a Spring Stiffness Variations)

  • 강도현;홍도관;우병철
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권3호
    • /
    • pp.134-138
    • /
    • 2005
  • A typical conventional systems of a linear motion use rack and pinions or ball screws to convert rotary motions from DC servo motors. A linear motor has been used a several field for a MEMS technology and a aircraft carrier. We have studied a transient response of a linear actuator with a damping ratio, spring constant and a pressed power for a constant stroke control.

대형 굴삭기용 주차 브레이크의 마찰 특성 분석 (Analysis of the Friction Characteristics of Parking Brake for Large Size Excavator)

  • 이용범;김광민
    • 동력기계공학회지
    • /
    • 제16권2호
    • /
    • pp.5-10
    • /
    • 2012
  • The parking brake is one of the essential units embedded in track driving motor for forward and backward motion of an excavator. It is composed of multi-friction discs. When the hydraulic motor stops, the multi-friction discs closely stick to the facing discs by acting of multi-spring forces. So, the friction forces generate the braking force by compressing the cylinder barrel of hydraulic motor. In this study, we combined the multi-friction discs to two kinds of spring which have different spring force, and the maximum torque measured at the rotational starting point of hydraulic motor through gradually increasing the rotational torque of load side hydraulic motor by use of 1 and 2 sheets of friction plates. And, under this experimental condition, the maximum coefficient of static friction and the characteristics of paper friction sheet were analyzed. The obtained experimental results will be applied to the design of parking brake system for producing large size excavator in the 85-ton weight class.

횡자속 선형전동기의 추력특성에 따른 선형액추에이터의 동특성 (Dynamic Response of Linear Actuator with the Thrust Force of Transverse Flux Linear Motor)

  • 우병철;강도현;홍도관
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권1호
    • /
    • pp.16-20
    • /
    • 2006
  • The proposed paper presents an integrated linear actuator which combines Transverse Flux Linear Motor(TFLM) for Household elelctric applications. They both use the same primary magnetic circuit, but they have different secondary movers. The paper presents a new design of linear motor for a new electromagnetic linear actuator, an tintegrated TFLM. The calculated tthrust force is good agreement with experiments. We have studied a transient response of a linear actuator with a damping ratio, spring constant and specially a pressed power patterns for a constant stroke control.

EFFECT OF RESIDUAL STRESS BY SHOT PEENING ON FATIGUE STRENGTH OF LCV LEAF SPRING

  • BAE D. H.;SOHN I. S.;JUNG W. S.;KIM N. S.;JUNG W. W.;PARK S. C.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.671-676
    • /
    • 2005
  • Spring is one of major suspension part of the light commercial vehicle (LCV). In the manufacturing process it is shot-peened to improve its fatigue strength. In this paper, residual stresses by shot peening were calculated through finite element analysis, and the effects of these residual stresses on fatigue strength of leaf spring were evaluated. Fatigue tests were performed with two kinds of specimens; one is actual leaf spring assembly, and the other is simulated 3-point bending specimen. Fatigue tests were performed under the loading condition that was measured on the proving ground. From the results, the maximum load-fatigue life relation of leaf spring was defined, and test results of 3 point bending specimen are in good agreement with those of leaf spring assembly. The effects of residual stresses by shot peening on fatigue strength of leaf spring is not large in the high load range, however, in the low load range, its effects were not negligible.

더블-액션 압출공정을 적용한 전동조향장치용 토션조인트 요크 개발 (Development of a Torsion Joint Yoke for Motor-Driven Power Steering System Using a Double-Action Extrusion Process)

  • 김현민;김연구;박용복
    • 소성∙가공
    • /
    • 제21권8호
    • /
    • pp.473-478
    • /
    • 2012
  • The yoke, a component of conventional motor-driven power steering system, often contains welding defects from its manufacturing process. To eliminate these defects, the precision cold forging process has been tried. In this study, the double-action complex forging has been used to manufacture a torsion joint yoke. The backward extrusion proved faster than the forward extrusion in forging of the product. The double-action complex forging process utilized an upper die composed of a punch, a punch guide, a disc spring and a coil spring. The forged material pushes up the punch guide, and then the disc spring and the coil spring balances the backward extrusion force. Consequently, the flow of material was essentially in the forward direction, resulting in a successful forging operation. The forging load of Al 6061-T6 was higher than that of the automotive structural hot rolled plate.

Influence of Rolling Friction in Linear Ball Guideways on Positioning Accuracy

  • Tanaka, Toshiharu;Ikeda, Kyohei;Otsuka, Jiro;Masuda, Ikuro;Oiwa, Takaaki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.85-89
    • /
    • 2007
  • Linear ball guideways have been used recently in precision or ultra-precision positioning devices. However, when the inner balls begin to roll or the moving direction reverses, these guideways are subject to rolling friction or nonlinear spring behavior. An ultra-precision device with a linear motor, referred to as a 'tunnel actuator' (TA), has been constructed to measure these phenomena. The application of a TA is beneficial for two reasons: it mostly cancels the attractive magnetic force between the stator and mover (armature), and its magnetic flux leakage is very low. The influence of the nonlinear spring behavior in ball guideways was investigated in this study using the pure driving force from a TA. The equilibrium between the driving force from the TA and the nonlinear spring force provided great accuracy for a positioning stage using a linear ball guideway.

전기화학 임피던스 분석을 통한 자동차용 코일스프링 강의 부식 평가 (Study on Corrosion of Automotive Coil Spring Steel by Electrochemical Impedance Spectroscopy)

  • 이규혁;박중현;안승호;서지원;장희진
    • Corrosion Science and Technology
    • /
    • 제16권6호
    • /
    • pp.298-304
    • /
    • 2017
  • Coil spring steels from the automobile suspension part after field exposure for 10 years and those after anti-corrosion validation test in proving ground of 5,000 ~ 10,000 km were examined for corrosion damages. Partial loss of paint, accumulation of corrosion product, and cracking of paint and superficial material were observed. The surface and subsurface region of spring steels had compressive residual stress and high hardness by shot peening. The surface hardness values of the specimens were 620 ~ 670 Hv. They were 60 ~ 80 Hv higher than those of the samples taken from the middle part of the spring. The maximum compressive stress was -916 ~ -1208 MPa measured at depth of about $100{\mu}m$. Electrochemical impedance spectroscopy showed that the resistances of charge transfer and the paint layer of the spring steels ranged from several tens to millions ${\Omega}{\cdot}cm^2$. The resistance of the field samples was much higher than that of the proving ground samples used in this study, implying that the proving ground test condition would be more corrosive than the field environment.