• Title/Summary/Keyword: Motor Cooling System

Search Result 179, Processing Time 0.025 seconds

Thermal Resistance Modeling of Linear Motor Driven Stages for Chip Mounter Applications (칩 마운터용 리니어 모터 스테이지의 열저항 모델링)

  • Jang, Chang-Soo;Kim, Jong-Young;Kim, Yung-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.96-101
    • /
    • 2001
  • Heat transfer in linear motor driven stages for surface mounting device applications was investigated. A simple one-dimensional thermal resistance model was introduced. In order to reduce three-dimensional nature to one-dimensional, a few assumptions and simplifications were employed suitably. A good agreement with a finite element heat transfer analysis in temperature profile was obtained. For validation, the analysis was compared with the measurement with respect to motor driving power. Overall discrepancy was less than $7^{\circ}C$. The influence of two high thermal resistance parts, insulation sheet and thermal contact between the coil assembly and the mounting plate, was examined through the analysis. Additionally, the thermal resistance analysis was applied to another stage including an internal cooling-air passage, and was found available for this system as well. After validation, the cooling effect was surveyed in terms of motor power, and cooling-air flow rate.

  • PDF

An analysis of Injection Molding Process for the Manufacturing of DC Motor Case (DC 모터 케이스 제조를 위한 사출성형공정 분석)

  • 민병현;김병곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.812-815
    • /
    • 2000
  • Injection molding process was taken to manufacture DC motor case that surrounds DC motor used as automobile parts. Up to now, DC motor case has been made by the deep drawing process or bending process of metal materials. Simulations of filling, packing and cooling processes were done by CAE tool like Moldflow software. Optimal delivery system was decided from the analysis of flow balance, and packing and cooling analyses were performed by using the design of experiment to minimize the volumetric shrinkage of molded part and the temperature difference between mold and part.

  • PDF

The Core Technical Trends of TESLA EV(Electric Vehicle) Motors (테슬라(TESLA) 전기자동차 핵심 기술동향)

  • Bae, Jin-Yong;Kim, Yong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.414-422
    • /
    • 2017
  • This paper reviews the core technical trends of TESLA EV Motors. The TESLA EV Motors is explosively popular with a considerable recharging infrastructure, a wide 17-[inch] touch display, 417 [HP], and 378 [km] going distance. The object of this study analyzes the body appearance, motor and, battery cooling system, battery arrangement, battery management system, super charging station, power electronics, and induction motor.

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.

On Cutting Characteristics Change of Low Temperature Cooling Tool(1st Report) - Cutting Characteristics of Cage Motor Rotor - (저온냉각공구의 절삭특성 변화 (제1보) -모터 회전자의 절삭특성)

  • 김순채;김희남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.44-48
    • /
    • 1994
  • The cutting process of cage motor rotor require high precision and good roughness. The surface roughness of cutting face is very important factor with effect on the magnetic flux density of cage motor rotor. The paper describes a cause of decrease in the cutting force and roughness on low temperature cooling tool by means of analysis on the mechanism of force system at cutting confition and experimental findings. The main results as compared with the room temperature cutting are as follow : 1) The cutting resistance decreased due to low temperature cooling tool. 2) The surface roughness decreased due to low temperature cooling tool.

  • PDF

The Diagnosis of Cooling Tower System (Cooling Tower System 진동 진단)

  • Lee, Sun-Hwi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1090-1094
    • /
    • 2007
  • The aim of this study is to estimate the cause of Cooling Tower vibration and eliminate the faults of fan with high vibration in spite of overhaul. The cause of high vibration was that the natural frequency of fan blade coincide with second blade pass frequency. To achieve reduction of Cooling Tower vibration, change motor speed from 1784rpm to 1714rpm, and then the vibration has reduced conspicuously.

  • PDF

Effects of Design Parameters on the Thermal Performance of a Brushless DC Motor (BLDC 모터의 열적 성능에 대한 설계 인자의 영향)

  • Kim, Min-Soo;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.141-148
    • /
    • 2008
  • A numerical simulation of brushless DC motor is performed to elucidate thermo-flow characteristics in winding and bearing with heat generation. Rotation of rotor and blades drives influx of ambient air into the rotor inlet. Recirculation zone exists in the tiny interfaces between windings. The flow separation causes poor cooling performance in bearing part and therefore the redesign of the bearing groove is required. The design parameters such as the inlet location, geometry and bearing groove threshold angle have been selected in the present simulation. As the inlet location moves inward in the radial direction, total incoming flow rate and heat transfer rate are increased. Total incoming flow rate is increased with increasing the inlet inner length. The effect of the bearing groove threshold angle on the thermal performance is less than that of other design parameters.

A Study on Low Noise Cooling/Ventilation System for Large Electric Motor (대형 전동기 냉각/통풍 시스템의 저소음화 연구)

  • Jo, Hye-Young;Jang, Ji-Sung;Kim, Dong-Hae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.973-974
    • /
    • 2014
  • 대형 전동기의 주요 소음원은 전자기 소음과 냉각/통풍 시스템 소음이며, 이 중 냉각/통풍 시스템이 전체 소음에 큰 영향을 미친다. 본 논문에서는 대형 전동기의 저소음 냉각/통풍 시스템 개발을 위해 저소음 냉각 팬을 개발하고 팬 커버 내부의 유로를 개선하였다. 유동해석은 상용 CFD 소프트웨어를 이용하였으며 팬 커버 내의 scroll 형상 및 air guide, baffle 의 유무에 따라 팬 커버의 압력손실을 계산하였다. 해석을 통해 팬 커버 내부의 난류 유동과 압력손실이 가장 작은 팬 커버 형상을 도출하였으며 개선된 냉각/통풍 시스템이 기존 냉각/통풍 시스템보다 6.5dB 감소된 것을 확인하였다.

  • PDF

Radiator Cooling Fan System by Switched Reluctance Motor for Automobiles (SRM을 이용한 자동차용 Radiator 냉각팬 구동시스템)

  • Yoon, Yong-Ho;Kim, Jae-Moon;Park, Sang-Hoon;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.235-240
    • /
    • 2009
  • In automobile, the introduction of electronically commutated motors has been accompanied by a proliferation of electronic devices. With this proliferation of electronic devices, an emphasis has been placed on EMC issues. This paper is proposed to use SRM as a radiator cooling fan in automotive applications. To drive SRM, Energy efficient C-dump converter is applied. Energy efficient C-dump converter, derived from the conventional C-dump converter, is proposed as a switched reluctance motor (SRM) drive for automotive engine cooling application. It is verified more efficient than other converters through simulation and experiments. And also SRM is valid for automotive applications that have strict EMC standards. Simulation and experimental results obtained on a laboratory prototype are finally presented to evaluate the performance.

Analysis on electrical and thermal characteristics of MI-SS racetrack coil under conduction cooling and external magnetic field

  • Chae, Yoon Seok;Kim, Ji Hyung;Quach, Huu Luong;Lee, Sung Hoon;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.61-69
    • /
    • 2021
  • This paper presents the analysis and experiment results on the electrical and thermal characteristics of metal insulation (MI) REBCO racetrack coil, which was wound with stainless steel (SS) tape between turn-to-turn layers, under rotating magnetic field and conduction cooling system. Although the field windings of superconducting rotating machine are designed to operate on a direct current, they may be subjected to external magnetic field due to the unsynchronized armature windings during electrical or mechanical load fluctuations. The field windings show the voltage and magnetic field fluctuations and the critical current reduction when they are exposed to an external magnetic field. Moreover, the cryogenic cooling conditions are also identified as the factors that affect the electrical and thermal characteristics of the HTS coil because the characteristic resistance changes according to the cryogenic cooling conditions. Therefore, it is necessary to investigate the effect of external magnetic field on the electrical and thermal characteristics of MI-SS racetrack coil for further development reliable HTS field windings of superconducting rotating machine. First, the major components of the experiment test (i.e., HTS racetrack coil construction, armature winding of 75 kW class induction motor, and conduction cooling system) were fabricated and assembled. Then, the MI racetrack coil was performed under liquid nitrogen bath and conduction cooling conditions to estimate the key parameters (i.e., critical current, time constant, and characteristic resistance) for the test coil in the steady state operation. Further, the test coil was charged to the target value under conduction cooling of 35 K then exposed to the rotating magnetic field, which was generated by three phrase armature windings of 75 kW class induction motor, to investigate the electrical and thermal characteristics during the transient state.