• 제목/요약/키워드: Motor Axis

검색결과 617건 처리시간 0.026초

영구자석 오버행에 의한 BLDC Motor의 전자기적 현상 및 진동특성 해석 (Analysis of Electromagnetic Phenomena and Vibration of BLDC Motor by Permanent Magnet Overhang)

  • 강규홍;김덕현;김규탁
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권11호
    • /
    • pp.564-571
    • /
    • 2006
  • In this paper, the estimation of Z-axis thrust ripple and vibration of BLDC motor with asymmetrical permanent magnet overhang is performed by 3-D Finite Element Method (3-D FEM) and vibration experimentation. The ripple of Z-axis thrust is due to armature reaction field in BLDC motor driven to squire wave. That is generating to Z-axis vibration. The analysis results of Z-axis thrust and the vibration by Z-axis thrust ripple is validated by comparison with experimental result.

레이저 보조 가공을 위한 2-축 틸팅의 회전각에 대한 연구 (Study on Angle Calculation of Two-axis Manipulator for Laser Assisted Machining)

  • 김동홍;정동원;이춘만
    • 한국정밀공학회지
    • /
    • 제31권2호
    • /
    • pp.113-117
    • /
    • 2014
  • Laser Assisted Machining (LAM) was often used in process of difficulty-to-cut materials. In previous study, Laser assisted machining was a straight path processing using 1-axis manipulator in laser module. But 1-axis manipulator in laser module was able to process only straight path. So, in this study, laser module in laser assisted machining equipped to 2-axis manipulator. 2-axis manipulator has two motors. First motor is machining direction motor and second motor is Vertical Motor. Machining direction motor rotates in the direction of machining and vertical motor rotates vertical direction in the direction of machining. Machining path of laser assisted machining was considered diagonal path and curved path of laser heat source. This study calculated the 2-axis manipulator's rotation angle in diagonal path and curved path.

주축 및 Z축 모터전류를 이용한 드릴파손 예측에 관한 연구 (Study on Prediction of Drill Breakage using Spindle and Z-axis Motor Currents)

  • 김화영;안중환
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.101-108
    • /
    • 1999
  • A reliable and practical monitoring of drill breakage is a crucial technique in automatic machining system. In this study, a real-time monitoring system was developed to predict drill breakage using both spindle and z-axis motor current. Drill breakage is monitored by detecting the level of residual motor current which is obtained through the moving average filter algorithm. The residual exhibits a feature of sharp decrease just before drill breakage. Therefore, drill breakage can be predicted by detecting this characteristic of residual component. Z-axis motor current is better to predict the drill breakage than spindle motor current, because the former is faster in response than the latter when drill breakage is occurred. The evaluation experiments have shown that the developed monitoring system works very well.

  • PDF

Magnetic Saturation Effect on the Rotor Core of Synchronous Reluctance Motor

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.634-639
    • /
    • 2011
  • This paper presents a study on the design parameters that consider the magnetic saturation effect in a rotor core of a synchronous reluctance motor. Two important design parameters in a rotor are selected to analyze the saturation effect of a synchronous reluctance motor, particularly in a rotor core. The thickness of the main segment, which is the main path of the d-axis flux, and the end rip, which affects the q-axis flux, are analyzed using the d-axis and q-axis inductances. Moreover, the characteristics of torque and torque ripple when magnetic saturation takes place are analyzed. The saturation effect is verified by comparing the reluctance torque between the experiment and FEM simulation.

단상 직립 기동형 영구자석 동기기의 회로정수에 따른 특성 해석 (Characteristic Analysis of Single Phase Line-start Permanent Magnet Synchronous Motor Considering Circuit Parameters)

  • 강규홍;홍정표
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권6호
    • /
    • pp.262-270
    • /
    • 2003
  • In this paper, the characteristics of single-phase line-start permanent magnet synchronous motor driven by constant voltage are analyzed on d-q axis vector diagram and compared with that of current controlled motor. The coupled method of symmetrical coordinates and d-q axis voltage equation are applied to the analysis method like the analysis of single-phase induction motor. From the result of the analysis, it is seen that motors driven by constant voltage source have effects on not only the amplitude of current and torque but also current and current phase angle, so overall characteristics such as power factor and load angle are affected by circuit parameters. For precise analysis and design of single-phase line-start synchronous motor, its characteristics should be analyzed on d-q axis vector plan in consideration of the variation of circuit parameters.

Optimal Unity Power Factor Control of Permanent Magnet Synchronous Motor with q-axis Field by Inverse LQ Method

  • Takami, Hiroshi
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.117-126
    • /
    • 2001
  • A synchronous motor(SM) with q-axis special field winding of which the q-axis field-current compensates and cancels armature reaction can be driven at unity power factor under the conditions of transient state as well as steady state. The motor operates in high efficiency in all conditions. However, in order to obtain maximum performance of the motor, it is required that the time constant of armature circuit corresponds to that of q-axis field circuit. Inverse LQ(ILQ) design method on a basis of the pole assignment is suitable for this problem:(1) The time constants of the output responses can be designed for desired specifications, (2) Relations between feedback gains and response of closed loop system are very clear and (3) Optimal solutions can be given by simple procedure of ILQ method without solving the Ricaati's equation, compared to the usual LQ design method. Accordingly, the ILQ method can make the responses of armature current and q-axis field-current correspond. In this paper, it is proved by numerical simulations and experiments that the ILQ method is very effective for optimal regulator design of this plant and realizes a high-performance motor with unity power factor and high efficiency.

  • PDF

지상 연소 시험을 위한 킥 모터의 추력 축 정렬 (The Thrust Axis Alignment of Kick Motor for Ground Firing Test)

  • 정동호;김지훈;이한주;오승협
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.389-392
    • /
    • 2008
  • The thrust axis alignment of the launch vehicle is very important because of the misalignment causes the unstable attitude control and results in mission failure. Generally, optical methods such as digital theodolite and laser tracker and mechanical method such as turn table method are used to thrust axis alignment. This article deals with the simple method of thrust axis alignment of Kick Motor.

  • PDF

단상 영구자석형 유도동기기의 정상상태 특성해석 (Steady-State Characteristic Analysis of Single-Phase Line-Start Permanent Magnet Synchronous Motor)

  • 강규홍;남혁;홍정표
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권2호
    • /
    • pp.53-60
    • /
    • 2003
  • This paper deals with steady-state analysis of a single-phase line-start permanent magnet synchronous motor. In order to analyze the steady-state characteristics, the asymmetric single-phase line-start synchronous motor is converted to the symmetric two-phase synchronous motor, that is, the asymmetric magnetic field is separated from the positive and the negative symmetric components using symmetrical-component theory. The analysis method of the synchronous motor on the d-q axis coordinates is used for the positive component and the equivalent circuit of the induction motor is applied for the negative component analysis. Moreover, d-q axis inductance considering current phase angle is applied to positive component analysis for precise characteristic analysis. In order to validate the proposed analysis method, the analysis results are compared with the experimental results.

Microprocessor Embedded 2-Axis Motor Control Chip의 설계 (Design of Microprocessor Embedded 2-Axis Motor Control Chip)

  • 노규진;최성혁;원종백;김종은;박종식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.193-196
    • /
    • 2001
  • In this paper we designed CAMC-SP, the microprocessor embedded 2-axis motor control chip which controls a precise pulse motor by generating the pulse needed to control step motor, DC servo and AC servo motor. This design enables to decrease costs and to minimize a size. First we designed risc type 8-bit microprocessor compatible with PIC16C84, second we designed pulse motor controller. CAMC-SP is integrated of those two block. We designed CAMC-SP by VHDL and we testified to the Performance of it by performing functional simulation.

  • PDF

리니어모터와 자기베어링을 채용한 초고속 HMC의 열특성 해석 (Thermal Characteristic Analysis of a High-Speed HMC with Linear Motor and Magnetic Bearing)

  • 김석일;이원재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.11-15
    • /
    • 2002
  • This paper presents the thermal characteristic analysis of a high-speed HMC with spindle speed of 50,000rpm. The spindle is supported by two radial and axial magnetic bearings. and the built-in motor is located between the axial and rear radial magnetic bearings. The X-axis and Y-axis feeding systems are composed of linear motor and linear motion guides, and the Z-axis feeding system is composed of servo-motor, ballscrew and linear motion guide. The thermal analysis model of high-speed HMC is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on the temperature distribution and thermal deformation under the conditions related to the heat generation of built-in motor, magnetic bearings, linear motors, servo-motor, ballscrew, and so on.

  • PDF