• 제목/요약/키워드: Motion study

검색결과 9,755건 처리시간 0.04초

3.5인치 FDB 스핀들 시스템의 Whirling, Tilting, Flying motion에 관한 연구 (A Study on Whirling, Tilting, Flying motion of 3.5 inch FDB spindle system)

  • 오승혁;이상훈;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.579-585
    • /
    • 2003
  • This paper investigates the whirling, tilting and flying motion of a HDD spindle system supported by FDB experimentally. Experimental setup is built to measure the flying, whirling and tilting motion of the HDD spindle system, and three capacitance probes fixed on the xyz-micrometers measure the displacement of a HDD spindle system in the xyz-directions. This research shows that the tilting and whirling motion is mostly dependent on the centrifugal force and the gyroscopic moment due to the unbalanced mass of a HDD spindle. It also shows that the rotating HDD spindle starts to float to the equilibrium position in the z-direction until the weight of the rotating spindle is equal to the supporting pressure generated in the upper and lower thrust bearing.

  • PDF

크레인 스프레더의 Swing Motion 제어에 관한 연구 : 로프 길이변화를 고려한 경우 (A Study on Swing Motion Control System Design for the Spreader of the Crane with Varying Rope Length)

  • 안상백;채규훈;김영복
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.55-61
    • /
    • 2004
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In this paper, we suggest a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. In this paper, we apply the $H_{\infty}$ based control technique to the anti-sway control system design problem. And the experimental result shows that the proposed control system is useful and robust to disturbances like winds and initial sway motion.

  • PDF

틸팅 차량용 시뮬레이터를 위한 6자유도 운동판 개발 (Development of a 6DOF Motion Platform for the Tilting Train Simulator)

  • 김남포;송용수;한성호;최강윤;김정석
    • 한국철도학회논문집
    • /
    • 제8권1호
    • /
    • pp.27-33
    • /
    • 2005
  • This paper presents a development of 6DOF motion platform far a tilting train simulator. The tilting train simulator will be used to verify the tilting electronics and tilting control algorithm which are to be applied the Korean 180km/h tilting train. The tilting train simulator is composed of a 6-axis motion platform, a track generation system, a graphic user interface, and a visualization system with 1600mm-diameter dome screen. In this study, the 6DOF motion platform for a tilting train simulator has been designed and manufactured. The motion platform developed is a motion platform of Stewart type. The inverse kinematic analysis has been performed to determine the length of the links of the platform. Furthermore, the specification of the motors have been evaluated by the equation of motion of the platform.

함정운동에 의해 발사대 해치에 작용하는 외란에 관한 연구 (Study on the Disturbance Applied to Launcher Hatch by Ship Motions)

  • 변영철;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제19권12호
    • /
    • pp.1111-1118
    • /
    • 2013
  • In this paper, the disturbance applied to launcher hatch by ship motions is introduced to identify the vertical ship motion disturbance. Basically, ship motions are comprised of 6 degrees of freedom: roll, pitch, yaw, heave, surge and sway. In the case of the shipboard launcher hatch the coupled pitch, heave and roll are significant motions to be transformed to a vertical direction motion. The maximum acceleration values are obtained from the vertical motion model and the ship motion data in accordance with ship type and hatch location on the ship. We verify that the maximum pitch motion mainly influences the launcher hatch and also present the quantity of the maximum load disturbance by the ship's motion acceleration.

실시간 휴먼 시뮬레이션을 위한 깊이 카메라 기반의 자세 판별 및 모션 보간 (Depth Camera-Based Posture Discrimination and Motion Interpolation for Real-Time Human Simulation)

  • 이진원;한정호;양정삼
    • 한국CDE학회논문집
    • /
    • 제19권1호
    • /
    • pp.68-79
    • /
    • 2014
  • Human model simulation has been widely used in various industrial areas such as ergonomic design, product evaluation and characteristic analysis of work-related musculoskeletal disorders. However, the process of building digital human models and capturing their behaviors requires many costly and time-consuming fabrication iterations. To overcome the limitations of this expensive and time-consuming process, many studies have recently presented a markerless motion capture approach that reconstructs the time-varying skeletal motions from optical devices. However, the drawback of the markerless motion capture approach is that the phenomenon of occlusion of motion data occurs in real-time human simulation. In this study, we propose a systematic method of discriminating missing or inaccurate motion data due to motion occlusion and interpolating a sequence of motion frames captured by a markerless depth camera.

운동감 및 다감각 가상현실 효과 시스템의 구조와 응용 (A Framework for VR Effects with Multi-sensory Motional Display)

  • 유병현;한순흥
    • 한국시뮬레이션학회논문지
    • /
    • 제14권3호
    • /
    • pp.55-66
    • /
    • 2005
  • Virtual reality (VR) simulators have been extended to transfer knowledge and education, and demands for exhibition systems for science education and cultural experiences has also increased. Existing VR simulators, which are based on the dynamics equations of motion, cannot easily be adapted to changes in simulation contents. In order to effectively transfer knowledge and maintain interests through educational applications, an experiential system that has multi-sensory effects as well as motion effects is required. In this study, we designed and implemented a motion generation that is tailored to experiential exhibition systems and multi-sensory VR effects. Both the sense of motion which is generated from the movement of the viewpoint of the visual image, and motion effects which are constructed in advance, are applied to motion simulation. Motion effects which occur during interaction between the user and the exhibition system can be easily added. Various sensory cues that are appropriate to the exhibition system are also considered.

  • PDF

Integrated Human and Rob-ot Ergonomics의 측면에서 로보트의 동작제어 개선에 관한 연구 (A study on the improvement of the robot motion control as a part of the integrated human and robot ergonomics)

  • 이순요;권규식;홍승권
    • 대한인간공학회지
    • /
    • 제9권1호
    • /
    • pp.21-27
    • /
    • 1990
  • Teaching Expert System/World Coordinate System(TES/WDS) was proposed to improve robot motion control. First, precise coordinate reading for getting the inherent data about position and posture of task objects was performed throgh the integrated image and fuzzy processing. Second, singularity and parameter limitation problems in getting the motion data about position and posture of robot in macro motion were solved by proposed geometric algorithm. Third, the unnecessary robot motion was also removed by the Robot Time and Motion (RTM) method and the Multi-Geometric Straight-Line Motion (MGSLM) method in micro motion. This results demonstrated reduction of the average teaching task time according to task order.

  • PDF

Analysis of Human Arm Movement During Vehicle Steering Maneuver

  • Tak, Tae-Oh;Kim, Kun-Young;Chun, Hyung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.444-451
    • /
    • 2005
  • The analysis of human arm motion during steering maneuver is carried out for investigation of man-machine interface of driver and steering system Each arm is modeled as interconnection of upper arm, lower arm, and hand by rotational joints that can properly represents permissible joint motion, and both arms are connected to a steering wheel through spring and damper at the contact points. The joint motion law during steering motion is determined through the measurement of each arm movement, and subsequent inverse kinematic analysis. Combining the joint motion law and inverse dynamic analysis, joint stiffness of arm is estimated. Arm dynamic analysis model for steering maneuver is setup, and is validated through the comparison with experimentally measured data, which shows relatively good agreement. To demonstrate the usefulness of the arm model, it is applied to study the effect of steering column angle on the steering motion.

ESTIMATION OF DRIFT PARAMETER AND CHANGE POINT VIA KALMAN-BUCY FILTER FOR LINEAR SYSTEMS WITH SIGNAL DRIVEN BY A FRACTIONAL BROWNIAN MOTION AND OBSERVATION DRIVEN BY A BROWNIAN MOTION

  • Mishra, Mahendra Nath;Rao, Bhagavatula Lakshmi Surya Prakasa
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1063-1073
    • /
    • 2018
  • We study the estimation of the drift parameter and the change point obtained through a Kalman-Bucy filter for linear systems with signal driven by a fractional Brownian motion and the observation driven by a Brownian motion.

A Motion Editing System for Handling Autonomous Creation of Character Animation

  • Lee, Ji-Hong;Kim, In-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.117.1-117
    • /
    • 2001
  • A motion handling technique that transforms existing animation motion data to a mathematically well-defined form. The transformed data can be utilized in any kind of autonomous motion creation process that handles such cases as changed environment, structure (kinematic / dynamic) modification, or changed constraints. To overcome the computational burden of traditional spacetime optimization, we divide full motion data frame into several parts, and we applied the transformation technique to each part using an optimizing tool(CFSQP). To show Ire feasibility of the proposed method, a comparison study results with traditional technique is included.

  • PDF