• 제목/요약/키워드: Motion resistance

검색결과 393건 처리시간 0.026초

Molecular Dynamic Simulation for Penetration of Carbon Nanotubes into an Array of Carbon Nnantotubes

  • Jang, Ilkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • 제36권5호
    • /
    • pp.290-296
    • /
    • 2020
  • When two layers of carbon nanotube (CNT) arrays are loaded to mate, the free ends of individual CNTs come into contact at the interface of the two layers. This leads to a higher contact resistance due to a smaller contact region. However, when the free CNT ends of one array penetrate into the mating array, the contact region increases, effectively lowering the contact resistance. To explore the penetration of mating CNTs, we perform molecular dynamic simulations of a simple unit cell model, incorporating four CNTs in the lower array layer coupled with a single moving CNT on the upper layer. The interaction with neighboring CNTs is modelled by long-range carbon bond order potential (LCBOP I). The model structure is optimized by energy minimization through the conjugate gradient method. A NVT ensemble is used for maintain a room temperature during simulation. The time integration is performed through the velocity-Verlet algorithm. A significant vibrational motion of CNTs is captured when penetration is not available, resulting in a specific vibration mode with a high frequency. Due to this vibrational behavior, the random behaviors of CNT motion for predicting the penetration are confirmed under the specific gap distances between CNTs. Thus, the probability of penetration is examined according to the gap distance between CNTs in the lower array and the aspect ratio of CNTs. The penetration is significantly affected by the vibration mode due to the van der Waals forces between CNTs.

해상시험 결과를 이용한 RIB의 4자유도 동력학 식별 (I) - 해상시험, 저항·추진 모델 (Identification of Four-DOF Dynamics of a RIB using Sea Trial Tests (I) - Sea Trial Test, Resistance and Propulsion Model)

  • 윤현규;윤근항;박인홍
    • 대한조선학회논문집
    • /
    • 제48권1호
    • /
    • pp.8-14
    • /
    • 2011
  • RIB(Rigid Inflatable Boat) is widely used for coastal transportation in the commercial use and for ISR(Intelligence, Surveillance, Reconnaissance) in the military use. Since RIB is around 10 meters in length and over 30 knots in speed, its motion characteristics in waves is quite different from a large scale ship. When it turns, large roll occurs and heeling direction is opposite to the large ship's case. Currently, many countries are developing USV(Unmanned Surface Vehicle) of which type is RIB. In order to develop high performance autopilot and way point controller, it is very important to identify RIB's motion characteristics. In this paper, sea trial test results of a 7-meter RIB such as speed, turning, zig-zag, and way point control tests were represented and its resistance and propulsion model was identified by using sea trial data and Savitsky's formula. In addition, the state space model which will be used in the identification of the four-degree-of-freedom dynamics in the next step was formulated and the identification procedure was proposed.

MR유체를 이용한 엔진마운트의 슬라이딩모드제어 (A Sliding Mode Control for an Engine Mount Using Magneto-Rheological Fluid)

  • 이동길;안영공;정석권;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1144-1149
    • /
    • 2001
  • In this paper, a sliding mode controller of a fluid engine mount using MR (Magneto-Rheological) fluid was discussed When the MR fluid is applied to a fluid mount, resistance of MR fluid can be controlled by electro-magnetic valve installed in the inertia track. Since the rheological property of the MR fluid shows a function of shear rate, the damping characteristics of the mount will be change according to the frequency. Changing an applied magnetic field to the valve changes the property of the mount, such as the resistance of the MR fluid, the notch and the resonant frequencies due to the fluid passing, quantity of the fluid passing, the effective piston area of the volumetric damping and stiffness. Therefore, the fluid mount using MR fluid can be regarded as a variable structure system The sliding mode control known well as a particular type of variable structure control was introduced in this study. The sliding mode control, which has inherent robustness, is also expected to improve the control performance in the engine mount The sliding mode controller for the mount formatted by taking into account the response property with a time constant to MR fluid and the variable mount property. The motion equations of the fluid mount are derived from Newton's law of motion and used in numerical simulation. Numerical simulations illustrate the effectiveness of the sliding mode controller.

  • PDF

ADIS16480 관성측정장치를 이용한 선체 운동 측정 시스템에 관한 연구 (A Study on Ship Motion Measurement System Using ADIS16480 Inertial Measurement Unit)

  • 김대정;임정빈
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2019년도 추계학술대회
    • /
    • pp.270-270
    • /
    • 2019
  • 관성측정장치(Inertial Measurement Unit)는 선박, 잠수함, 항공기 등 여러 응용분야에서 적용되어 자세 측정 영역에 주로 사용되고 있지만, 이런 장비는 고가의 장비이기 때문에 특수 분야에서만 한정적으로 이용되어 왔다. 본 연구에서는 저가의 관성측정장치(Inertial Measurement Unit)를 이용하여 실시간으로 선박의 속도와 방향, 중력, 가속도를 측정함으로써 선박의 감항성을 확인하며, 더 나아가 실선 선박의 저항 및 조종성능 추정을 위한 유체력 미계수 추정을 위한 연구방법을 고안하였다. 이에 본 연구는 실제 해상에서 선체 운동요소를 계측하고, 계측된 데이터의 처리 및 해석을 통하여 선박의 종합적인 안전성 평가 및 실선의 저항 및 조종성능 추정을 행하였다.

  • PDF

포항모래의 액상화 저항 특성에 관한 연구 (Liquefaction Resistance of Pohang Sand)

  • 박성식;농쩐쩐;최선규;문홍득
    • 한국지반공학회논문집
    • /
    • 제34권9호
    • /
    • pp.5-17
    • /
    • 2018
  • 2017년 11월 15일 경상북도 포항시 흥해읍에서 5.4 규모의 지진으로 논, 공원 또는 도로 등지에서 액상화로 인해 모래와 물이 지표면으로 분출되는 현상이 국내에서 처음으로 발생하였다. 본 연구에서는 포항지역 논에서 분출한 모래를 채취한 다음, 이를 2 종류로 분류하여 이에 대한 반복직접단순전단시험을 실시하였다. 포항모래의 상대밀도에 따른 액상화 거동을 연구하기 위해 느슨하거나 조밀한 상태로 모래를 재성형한 다음 구속응력 100kPa 또는 200kPa를 가한 후 정현파의 반복전단응력을 가하였다. 또한 실제 포항지역에서 계측된 지진파를 실험기기에 입력하여 액상화 발생 여부를 연구하였다. 정현파를 사용한 전단시험 결과 느슨한 시료의 전단저항응력비는 0.12-0.14, 조밀한 시료는 0.17-0.21정도로 조밀한 모래의 액상화 저항력이 느슨한 상태보다 42-50% 정도 높게 나타났다. 모래 종류 및 구속응력보다는 모래의 상대밀도가 액상화 저항력에 더 큰 영향을 미치는 것으로 나타났다. 실지진파를 이용한 전단시험 결과는 구속응력에 관계없이 느슨한 모래의 경우는 2회, 조밀한 모래는 3회 정도의 반복입력 시 액상화가 발생하는 것으로 나타났다.

나노초의 발진 기동 시간과 28 %의 튜닝 대역폭을 가지는 버블형 동작감지기용 광대역 콜피츠 전압제어발진기 (Wideband Colpitts Voltage Controlled Oscillator with Nanosecond Startup Time and 28 % Tuning Bandwidth for Bubble-Type Motion Detector)

  • 신임휴;김동욱
    • 한국전자파학회논문지
    • /
    • 제24권11호
    • /
    • pp.1104-1112
    • /
    • 2013
  • 본 논문에서는 감지기에서 특정 거리만큼 떨어진 곳에 버블 형태의 감지 영역을 형성하는 새로운 버블형 동작 감지기를 위해 나노초의 발진 기동 시간과 8.35 GHz의 중심주파수를 가지는 광대역 콜피츠 전압제어발진기를 설계 및 제작하였다. 전압제어발진기는 HEMT 소자 및 콜피츠 궤환 구조를 이용한 부성 저항부와 바랙터 다이오드 및 단락된 마이크로스트립 분기 선로를 이용한 공진부로 구성되었다. 패키지된 트랜지스터의 기생 인덕턴스로 인해 8.1 GHz에서 용량성 값에서 유도성 값으로 변하는 부성 저항부의 리액턴스 변화는 마이크로스트립 분기 선로와 직렬 캐패시터를 이용하여 보상하였다. 부성 저항 값을 결정하는 궤환 캐패시터들의 값을 조정함으로써 부성 저항 값 변화에 따른 발진 기동 시간 개선 여부와 부성 저항부의 입력 리액턴스 기울기 변화에 따른 대역폭 개선 여부도 조사되었다. 제작된 전압제어발진기는 2.3 GHz(28 %)의 튜닝 대역폭과 4.1~7.5 dBm의 출력 전력, 그리고 2 nsec 이하의 발진 기동 시간을 가지는 것으로 측정되었다.

Development of wearable Range of Motion measurement device capable of dynamic measurement

  • Song, Seo Won;Lee, Minho;Kang, Min Soo
    • International journal of advanced smart convergence
    • /
    • 제8권4호
    • /
    • pp.154-160
    • /
    • 2019
  • In this paper, we propose the miniaturization size of wearable Range of Motion(ROM) and a system that can be connected with smart devices in real-time to measure the joint movement range dynamically. Currently, the ROM of the joint is directly measured by a person using a goniometer. Conventional methods are different depending on the measurement method and location of the measurement person, which makes it difficult to measure consistently and may cause errors. Also, it is impossible to measure the ROM of joints in real-life situations. Therefore, the wearable sensor is attached to the joint to be measured to develop a miniaturize size ROM device that can measure the range of motion of the joint in real-time. The sensor measured the resistance value changed according to the movement of the joint using a load cell. Also, the sensed analog values were converted to digital values using an Analog to Digital Converter(ADC). The converted amount can be transmitted wireless to the smart device through the wearable sensor node. As a result, the developed device can be measured more consistently than the measurement using the goniometer, communication with IoT-based smart devices, and wearable enables dynamic observation. The developed wearable sensor node will be able to monitor the dynamic state of rehabilitation patients in real-time and improve the rapid change of treatment method and customized treatment.

A Numerical Study on Dynamic Instability Motion Control of Wave-Piercing High-Speed Planing Craft in Calm Water using Side Appendages

  • Kim, Sang-Won;Seo, Kwang-Cheol;Lee, Dong-Kun;Lee, Gyeong-Woo
    • 해양환경안전학회지
    • /
    • 제23권3호
    • /
    • pp.320-329
    • /
    • 2017
  • In this research, we have calculated characteristics of wave-piercing high-speed planing hull, by using a RANS solver and overset grid method, for comparing with experimental measurements of that and simulating with several appendages, since the computed results of commercial CFD code look reasonable for the prediction of the performances of planing hulls on calm water in planing conditions. As a result, it is confirmed that the dynamic instability phenomena in pitch and heave motions (porpoising) occurred after a certain $Fn_V$, and effectively suppressed using some of appendages, especially the 0.5L spray rail is suppressed to 24-55 % in the pitch motion and 33-55 % in the heave motion. In spray phenomenon, 1L hard chine suppress spray effectively and it is effective to set the angle of appendages to be less than $0^{\circ}$ in order to suppress wave.

Soil-structure interaction effects on collapse probability of the RC buildings subjected to far and near-field ground motions

  • Iman Hakamian;Kianoosh Taghikhani;Navid Manouchehri;Mohammad Mahdi Memarpour
    • Earthquakes and Structures
    • /
    • 제25권2호
    • /
    • pp.99-112
    • /
    • 2023
  • This paper investigates the influences of Soil-Structure Interaction (SSI) on the seismic behavior of two-dimensional reinforced concrete moment-resisting frames subjected to Far-Field Ground Motion (FFGM) and Near-Field Ground Motion (NFGM). For this purpose, the nonlinear modeling of 7, 10, and 15-story reinforced concrete moment resisting frames were developed in Open Systems for Earthquake Engineering Simulation (OpenSees) software. Effects of SSI were studied by simulating Beam on Nonlinear Winkler Foundation (BNWF) and the soil type as homogenous medium-dense. Generally, the building resistance to seismic loads can be explained in terms of Incremental Dynamic Analysis (IDA); therefore, IDA curves are presented in this study. For comparison, the fragility evaluation is subjected to NFGM and FFGM as proposed by Quantification of Building Seismic Performance Factors (FEMA P-695). The seismic performance of Reinforced Concrete (RC) buildings with fixed and flexible foundations was evaluated to assess the probability of collapse. The results of this paper demonstrate that SSI and NFGM have significantly influenced the probability of failure of the RC frames. In particular, the flexible-base RC buildings experience higher Spectral acceleration (Sa) compared to the fixed-base ones subjected to FFGM and NFGM.

Comparison of the immediate effect of hamstring stretching techniques on hamstring muscle range of motion, pressure pain threshold and muscle tone

  • Yu, June-Su;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • 제8권4호
    • /
    • pp.210-217
    • /
    • 2019
  • Objective: This study was conducted to compare the immediate effect of hamstring stretching techniques of static stretching, proprioceptive neuromuscular facilitation (PNF) hold-relax and PNF irradiation on the hamstring muscle. Design: Three-group pretest-posttest design. Methods: Fifty-one subjects with shortened hamstrings were randomly assigned to the static stretching group (n=17), PNF hold-relax group (n=17), and the PNF irradiation group (n=17). All subjects performed an active knee extension (AKE) test to assess for the lower extremity with a shortened hamstring. The static stretching group performed stretches by lifting their leg to the maximum extent (3 times, 30 seconds). The PNF hold-relax group performed maximal isometric contraction against the experimenter's resistance (3 times, 10 seconds). The PNF irradiation group performed maximum isometric contraction against the experimenter's resistance toward the direction of the body (5 times, 5 seconds). The pre and post-tests measured range of motion (ROM), pressure pain thresholds (PPT) and muscle tone. Results: There were significant differences in ROM and PPT between pre and post intervention in each group (p<0.05). There was a significant difference only in the ROM among groups (p<0.05). Post-hoc analysis showed that the changes in ROM occurred in the order of the PNF hold-relax group, static stretching group and PNF irradiation group (p<0.05). Conclusions: The findings of this study suggest that the PNF irradiation technique may improve ROM and may be used to improve ROM similar to other stretching techniques. Therefore, the PNF irradiation technique could be included in stretching programs and can be used as a suitable stretching method depending on the situation.