• Title/Summary/Keyword: Motion representation

Search Result 192, Processing Time 0.028 seconds

Modeling and Robust Synchronizing Motion Control of Twin-Servo System Using Network Representation (네트워크 표현을 이용한 트윈서보 시스템의 모델링과 강건 동기 동작 제어)

  • Kim, Bong-Keun;Park, Hyun-Taek;Chung, Wan-Kyun;Suh, Il-Hong;Song, Joong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.871-880
    • /
    • 2000
  • A twin-servo mechanism is used to increase the payload capacity and assembling speed of high precision motion control systems such as semiconductor chip mounters. In this paper, we focus on the modeling of the twin-servo system and propose its network representation. And also, we propose a robust synchronizing motion control algorithm to cancel out the skew motion of the twin-servo system caused by different dynamic characteristics of two driving systems and the vibration generated by high accelerating and decelerating motions. The proposed control algorithm consists of separate feedback motion control algorithms for each driving system and a skew motion compensation algorithm. A robust tracking controller based on internal-loop compensation is proposed as a separate motion controller and its disturbance attenuation property is shown. The skew motion compensation algorithm is also designed to maintain the synchronizing motion during high speed operation, and the stability of the whole closed loop system is proved based on passivity theory. Finally, experimental results are shown to illustrate control performance.

  • PDF

Representation Techniques for 4-Dimensional MR Images

  • Homma, Kazuhiro;Takenaka, Kenji;Nakai, Yoshihiko;Hirose, Takeshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.429-431
    • /
    • 2002
  • Metabolic analysis of biological tissues, the interventional radiology in MRT (Magnetic Resonance Treatment) and for clinical diagnoses, representation of 4-Dimensional (4D) structural information (x,y,z,t) of biological tissues is required. This paper discusses image representation techniques for those 4D MR Images. We have proposed an image reconstruction method for ultra-fast 3D MRI. It is based on image interpolation and prediction of un-acquired pictorial data in both of the real and the k-space (the acquisition domain in MRI). A 4D MR image is reconstructed from only two 3D MR images and acquired a few echo signals that are optimized by prediction of the tissue motion. This prediction can be done by the phase of acquired echo signal is proportioned to the tissue motion. On the other hand, reconstructed 4D MR images are represented as a 3D-movie by using computer graphics techniques. Rendered tissue surfaces and/or ROIs are displayed on a CRT monitor. It is represented in an arbitrary plane and/or rendered surface with their motion. As examples of the proposed representation techniques, the finger and the lung motion of healthy volunteers are demonstrated.

  • PDF

Twisted product representation of reflected brownian motion in a cone

  • Kwon, Young-Mee
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.471-480
    • /
    • 1996
  • Consider a strong Markov process $X^0$ that has continuous sample paths in the closed cone $\bar{G}$ in $R^d(d \geq 3)$ such that the process behaves like a ordinary Brownian motion in the interior of the cone, reflects instantaneously from the boundary of the cone and is absorbed at the vertex of the cone. It is shown that $X^0(t)$ has a representation $R(t) \ominus (t)$ where $R(t) \in [0, \infty)$ and $\ominus(t) \in S^{d-1}$, the surface of the unit ball.

  • PDF

Human-like Arm Movement Planning for Humanoid Robots Using Motion Capture Database (모션캡쳐 데이터베이스를 이용한 인간형 로봇의 인간다운 팔 움직임 계획)

  • Kim, Seung-Su;Kim, Chang-Hwan;Park, Jong-Hyeon;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.188-196
    • /
    • 2006
  • During the communication and interaction with a human using motions or gestures, a humanoid robot needs not only to look like a human but also to behave like a human to make sure the meanings of the motions or gestures. Among various human-like behaviors, arm motions of the humanoid robot are essential for the communication with people through motions. In this work, a mathematical representation for characterizing human arm motions is first proposed. The human arm motions are characterized by the elbow elevation angle which is determined using the position and orientation of human hands. That representation is mathematically obtained using an approximation tool, Response Surface Method (RSM). Then a method to generate human-like arm motions in real time using the proposed representation is presented. The proposed method was evaluated to generate human-like arm motions when the humanoid robot was asked to move its arms from a point to another point including the rotation of its hand. The example motion was performed using the KIST humanoid robot, MAHRU.

  • PDF

Semantic Representation of Moving Objectin Video Data Using Motion Ontology (Motion Ontology를 이용한 비디오내 객체 움직임의 의미표현)

  • Shin, Ju-Hyun;Kim, Pan-Koo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.1
    • /
    • pp.117-127
    • /
    • 2007
  • As the value of the multimedia data is getting high, the study on the semantic recognition and retrieval about the multimedia information is strongly demanded. In this paper, we build the motion ontology and adopt it for representing the meaning of the moving objects in video data. By referencing the WordNet structure, we extend its semantic meaning based on the reclassification of motion verbs, which are used to represent the semantic meaning of moving objects. The represented information is receded in OWL/RDF(S). Here, we could expect the 'Is-A' and 'Equivalent' reasoning of the data as we use the ontologies. And the semantic representation about the moving objects is possible through the video annotation using ontology. And we tested the accuracy of the system comparing with the key-word based system. As a result, we could get the approximately 10% improvement of the system performance.

  • PDF

Motion Planning and Control of Wheel-legged Robot for Obstacle Crossing (휠-다리 로봇의 장애물극복 모션 계획 및 제어 방법)

  • Jeong, Soonkyu;Won, Mooncheol
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.500-507
    • /
    • 2022
  • In this study, a motion planning method based on the integer representation of contact status between wheels and the ground is proposed for planning swing motion of a 6×6 wheel-legged robot to cross large obstacles and gaps. Wheel-legged robots can drive on a flat road by wheels and overcome large obstacles by legs. Autonomously crossing large obstacles requires the robot to perform complex motion planning of multi-contacts and wheel-rolling at the same time. The lift-off and touch-down status of wheels and the trajectories of legs should be carefully planned to avoid collision between the robot body and the obstacle. To address this issue, we propose a planning method for swing motion of robot legs. It combines an integer representation of discrete contact status and a trajectory optimization based on the direct collocation method, which results in a mixed-integer nonlinear programming (MINLP) problem. The planned motion is used to control the joint angles of the articulated legs. The proposed method is verified by the MuJoCo simulation and shows that over 95% and 83% success rate when the height of vertical obstacles and the length of gaps are equal to or less than 1.68 times of the wheel radius and 1.44 times of the wheel diameter, respectively.

A Study on the Dynamic Analysis for Flexible Robotic Arms (유연 로보트팔의 동특성 해석에 관한 연구)

  • Kim, Chang-Boo;You, Young-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.107-116
    • /
    • 1993
  • In the design and operation of robitic arm with flexible links, the equation of motion are required to exactly model the interaction between rigid body motion and elastic motion and to be formulated efficientlyl. In this paper, the flexible link is represented by applying the D-H rigid link representation method to measure the elestic deformation. And the equations of motion of robotic arm, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated from the principle of virtual power. Dynamic characteristics due to elastic deformation of each link are obtained by using F. E. M to model complex shaped link acurately and by eliminating elastic modes of higher order that do not largely affect motion to reduce the number of elastic degrees of freedom. Also presented is the result of simulation of flexible robotic arms whose joints are controlled by direct or PD control.

  • PDF

Motion Estimation Using 3-D Straight Lines (3차원 직선을 이용한 카메라 모션 추정)

  • Lee, Jin Han;Zhang, Guoxuan;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.300-309
    • /
    • 2016
  • This paper proposes a method for motion estimation of consecutive cameras using 3-D straight lines. The motion estimation algorithm uses two non-parallel 3-D line correspondences to quickly establish an initial guess for the relative pose of adjacent frames, which requires less correspondences than that of current approaches requiring three correspondences when using 3-D points or 3-D planes. The estimated motion is further refined by a nonlinear optimization technique with inlier correspondences for higher accuracy. Since there is no dominant line representation in 3-D space, we simulate two line representations, which can be thought as mainly adopted methods in the field, and verify one as the best choice from the simulation results. We also propose a simple but effective 3-D line fitting algorithm considering the fact that the variance arises in the projective directions thus can be reduced to 2-D fitting problem. We provide experimental results of the proposed motion estimation system comparing with state-of-the-art algorithms using an open benchmark dataset.

Unsupervised Motion Pattern Mining for Crowded Scenes Analysis

  • Wang, Chongjing;Zhao, Xu;Zou, Yi;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3315-3337
    • /
    • 2012
  • Crowded scenes analysis is a challenging topic in computer vision field. How to detect diverse motion patterns in crowded scenarios from videos is the critical yet hard part of this problem. In this paper, we propose a novel approach to mining motion patterns by utilizing motion information during both long-term period and short interval simultaneously. To capture long-term motions effectively, we introduce Motion History Image (MHI) representation to access to the global perspective about the crowd motion. The combination of MHI and optical flow, which is used to get instant motion information, gives rise to discriminative spatial-temporal motion features. Benefitting from the robustness and efficiency of the novel motion representation, the following motion pattern mining is implemented in a completely unsupervised way. The motion vectors are clustered hierarchically through automatic hierarchical clustering algorithm building on the basis of graphic model. This method overcomes the instability of optical flow in dealing with time continuity in crowded scenes. The results of clustering reveal the situations of motion pattern distribution in current crowded videos. To validate the performance of the proposed approach, we conduct experimental evaluations on some challenging videos including vehicles and pedestrians. The reliable detection results demonstrate the effectiveness of our approach.