• 제목/요약/키워드: Motion history image (MHI)

검색결과 14건 처리시간 0.016초

MHI와 M-bin Histogram을 이용한 이동물체 추적 (Moving Object Tracking Using MHI and M-bin Histogram)

  • 오연석;이순탁;백중환
    • 한국항행학회논문지
    • /
    • 제9권1호
    • /
    • pp.48-55
    • /
    • 2005
  • 본 논문에서는 다중 카메라 감시 시스템에서의 효율적인 이동물체 추적기법을 제안한다. 시스템에 사용된 컬러 CCD 카메라는 고유의 IP를 할당받는 네트워크 카메라이며, 입력영상은 미디어 서버와 브릿지, 그리고 AP(Access Point)와의 무선통신을 통해 전송된다. 감시시스템은 네트워크를 통해 전송된 영상을 트래킹 모듈에 전달하게 되며, 컬러 매칭 기법을 이용하여 이동물체를 실시간으로 추적한다. 두 개의 트래킹 세트를 구성하여 이동물체가 특정 카메라의 FOV(Field of view)를 벗어날 경우, 카메라 간에 핸드 오버가 가능케 함으로써 계속해서 이동물체를 추적하도록 한다. 핸드 오버 발생시에 타깃이 되는 정확한 이동물체 추적을 위하여 배경 정보 처리와 컬러 정보를 이용한 MHI(Motion History Information)와 M-bin histogram 기법을 제안한다. MHI를 이용하여 이동물체의 운동방향과 속도를 계산해 낼 수 있으며, 이러한 정보를 바탕으로 예상 이동위치를 판단할 수 있다. MHI를 이용한 결과, 단순히 M-bin histogram 기법을 이용하여 템플릿 매칭을 했을 경우 보다 속도와 안정성에 있어서 성능 향상을 가져옴을 실험을 통해 확인할 수 있었다.

  • PDF

모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용한 깊이 정보 기반의 연속적인 사람 행동 인식 시스템 (Depth-Based Recognition System for Continuous Human Action Using Motion History Image and Histogram of Oriented Gradient with Spotter Model)

  • 음혁민;이희진;윤창용
    • 한국지능시스템학회논문지
    • /
    • 제26권6호
    • /
    • pp.471-476
    • /
    • 2016
  • 본 논문은 깊이 정보를 기반으로 모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용하여 연속적인 사람 행동들을 인식하는 시스템을 설명하고 연속적인 행동 인식 시스템에서 인식 성능을 개선하기 위해 행동 적출을 수행하는 적출 모델을 제안한다. 본 시스템의 구성은 전처리 과정, 사람 행동 및 적출 모델링 그리고 연속적인 사람 행동 인식으로 이루어져 있다. 전처리 과정에서는 영상 분할과 시공간 템플릿 기반의 특징을 추출하기 위하여 Depth-MHI-HOG 방법을 사용하였으며, 추출된 특징들은 사람 행동 및 적출 모델링 과정을 통해 시퀀스들로 생성된다. 이 생성된 시퀀스들과 은닉 마르코프 모델을 사용하여 정의된 각각의 행동에 적합한 사람 행동 모델과 제안된 적출 모델을 생성한다. 연속적인 사람 행동 인식은 연속적인 행동 시퀀스에서 적출 모델에 의해 의미 있는 행동과 의미 없는 행동을 분할하는 행동 적출과 의미 있는 행동 시퀀스에 대한 모델의 확률 값들을 비교하여 연속적으로 사람 행동들을 인식한다. 실험 결과를 통해 제안된 모델이 연속적인 행동 인식 시스템에서 인식 성능을 효과적으로 개선하는 것을 검증한다.

감시카메라 영상기반 응급상황 탐지 및 이동로봇 추적 시스템 (Emergency Situation Detection using Images from Surveillance Camera and Mobile Robot Tracking System)

  • 한태우;서용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제9권5호
    • /
    • pp.101-107
    • /
    • 2009
  • 본 논문은 감시카메라 영상으로부터 응급상황을 탐지하는 방법과 응급상황의 정밀 탐색 및 서비스를 위한 이동로봇 추적 시스템 개발에 대하여 기술한다. 건물 곳곳에 설치된 카메라로부터 얻어지는 일련의 영상들을 분석하여 처리함으로써 사람의 행동을 인식할 수 있으며, 이 중 응급상황이 탐지된 경우 준비된 이동로봇을 이용해 응급상황 발생지점의 정밀 탐색이 가능하다. 감시 카메라 영상을 통하여 사람의 행동들을 인식하기 위해서는 인간의 모습이라고 가정되는 영역들을 추적하고 관리해야 한다. 한 영상에서 가우시안 혼합 모델(MOG)을 이용하여 배경과 분리된 관심 영역들을 추출하고, 각 영역들을 외관 모델을 이용하여 지속적으로 추적한다. 그리고 각 영역의 실루엣 정보를 이용한 움직임 누적 영상(MHI)을 생성하여 행동을 모델링하고 신경망을 이용하여 응급 상황을 최종 인식한다. 또한 응급상황에 처한 사람과 이동로봇의 위치정보를 계산해 이동로봇이 사람에게 접근하는 기술을 구현한다.

  • PDF

Human Action Recognition Using Pyramid Histograms of Oriented Gradients and Collaborative Multi-task Learning

  • Gao, Zan;Zhang, Hua;Liu, An-An;Xue, Yan-Bing;Xu, Guang-Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권2호
    • /
    • pp.483-503
    • /
    • 2014
  • In this paper, human action recognition using pyramid histograms of oriented gradients and collaborative multi-task learning is proposed. First, we accumulate global activities and construct motion history image (MHI) for both RGB and depth channels respectively to encode the dynamics of one action in different modalities, and then different action descriptors are extracted from depth and RGB MHI to represent global textual and structural characteristics of these actions. Specially, average value in hierarchical block, GIST and pyramid histograms of oriented gradients descriptors are employed to represent human motion. To demonstrate the superiority of the proposed method, we evaluate them by KNN, SVM with linear and RBF kernels, SRC and CRC models on DHA dataset, the well-known dataset for human action recognition. Large scale experimental results show our descriptors are robust, stable and efficient, and outperform the state-of-the-art methods. In addition, we investigate the performance of our descriptors further by combining these descriptors on DHA dataset, and observe that the performances of combined descriptors are much better than just using only sole descriptor. With multimodal features, we also propose a collaborative multi-task learning method for model learning and inference based on transfer learning theory. The main contributions lie in four aspects: 1) the proposed encoding the scheme can filter the stationary part of human body and reduce noise interference; 2) different kind of features and models are assessed, and the neighbor gradients information and pyramid layers are very helpful for representing these actions; 3) The proposed model can fuse the features from different modalities regardless of the sensor types, the ranges of the value, and the dimensions of different features; 4) The latent common knowledge among different modalities can be discovered by transfer learning to boost the performance.