In this paper, we propose a variable step search fast motion estimation algorithm using local statistics of neighboring motion vectors. Using the degree of correlation between neighboring motion vectors, motion search range is adaptively adjusted to reduce unnecessary search points. Based on the adjusted search range, motion vector is obtained by variable search step. Experimental results show that the proposed algorithm has the capability to dramatically reduce the search points and computing cost for motion estimation, comparing to fast full spiral search motion estimation and other fast motion estimation.
Motion estimation is a key technique of modern video processing that significantly improves the coding efficiency significantly by exploiting the temporal redundancy between successive frames. Thread-level parallelism is a promising method to accelerate the motion estimation process for multithreading general-purpose processors. In this paper, we propose a parallel motion estimation algorithm which parallelizes the motion search process of the current H.264/AVC encoder. The proposed algorithm is implemented using the OpenMP application programming interface (API) and can be easily integrated into the current encoder. The experimental results show that the proposed parallel algorithm can reduce the processing time of the motion estimation up to 65.08% without any penalty in the rate-distortion (RD) performance.
The Journal of Korean Institute of Communications and Information Sciences
/
v.26
no.11A
/
pp.1889-1896
/
2001
This paper proposes the hierachically regularized motion estimation technique for the efficient and accurate motion estimation. To use hierachical technique increases the reliability of motion vectors. And the regularization of neighbor vectors decreases bit rate of motion vectors. Also, using fast motion estimation algorithm with a few candidate vectors, the processing time added by regularization can be decreased. In the result of the experiment, the fast motion estimation with hierachical regularization technique achieves less computations and decreases estimation and distribution of false vectors.
It is possible to improve the accuracy of the motion estimation for a video by applying a variable block size. However, it has limits in the zoom motion estimation. In this paper, we propose a method for estimating the zoom motion with variable block size. The proposed method separates the background within the object picture by depth information obtained from a depth camera, and only the object regions are applied to zoom scale, but the background is not applied. In addition, the object regions select efficiently variable block size mode in consideration of the generated motion vectors and the accuracy of motion estimation at the same time. Simulation results show the accuracy of the motion estimation and the number of motion vectors for the proposed method. It is verified that the proposed method can reduce the number of motion while maintaining the similar accuracy of motion estimation than the conventional motion estimation methods.
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.6
/
pp.62-69
/
2015
In this paper, a new frame rate up conversion (FRUC) algorithm using adaptive motion estimation (AME-FRUC) is proposed. The proposed algorithm performs extended bilateral motion estimation (EBME) conducts motion estimation (ME) processes on the static region, and extract region of interest with the motion vector (MV). In the region of interest block, the proposed AME-FRUC uses the texture block partitioning scheme and the unilateral motion estimation for improving ME accuracy. Finally, motion compensated frame interpolation (MCFI) are adopted to interpolate the intermediate frame in which MCFI is employed adaptively based on ME scheme. Experimental results show that the proposed algorithm improves the PSNR up to 3dB, the SSIM up to 0.07 and 68% lower SAD calculations compared to the EBME and the conventional FRUC algorithms.
Motion Estimation which is used to reduce the redundant data plays an important role in video compressions. However, it requires huge computational complexity of the encoder part. And therefore many fast motion estimation methods has been developed to reduce complexity. Multi-view video is obtained by using many cameras at different positions and its complexity increases in proportion to the number of cameras. In this paper, we proposed a fast motion estimation method for multi-view video. The proposed method predicts a search start point by using correlated candidate vectors of the current block. According to the motion size of the start search point, a search start pattern of the current block is decided adaptively. The proposed method proves to be about 2 ~ 5 times faster than existing methods while maintaining similar image quality and bitrates.
Journal of Institute of Control, Robotics and Systems
/
v.16
no.10
/
pp.927-932
/
2010
Estimation methods of motion intention from bio-signal present challenges in man machine interaction(MMI) to offer user's command to machine without control of any devices. Measurements of meaningful bio-signals that contain the motion intention and motion estimation methods from bio-signal are important issues for accurate and safe interaction. This paper proposes a novel motion estimation sensor based on a geometrical muscle changes, and a motion estimation method using the sensor. For estimation of the motion, we measure the circumference change of the muscle which is proportional to muscle activation level using a flexible piezoelectric cable (pMAS, piezo muscle activation sensor), designed in band type. The pMAS measures variations of the cable band that originate from circumference changes of muscle bundles. Moreover, we estimate the elbow motion by applying the sensor to upper limb with least square method. The proposed sensor and prediction method are simple to use so that they can be used to motion prediction device and methods in rehabilitation and sports fields.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.39
no.2
/
pp.87-95
/
2002
In this paper, we proposed a fast multi-resolution motion estimation(MRME) algorithm. This algorithm exploits the half-pixel accuracy motion estimation(HPAME) for exact motion vectors in the baseband and block classification for the reduction of bit amounts and computational loads. Generally, as the motion vector in the baseband are used as initial motion vector in the high frequency subbands, it has crucial effect on quality of the motion compensated image. For this reason, we exploit HPAME in the motion estimation for the baseband. But HPAME requires additional bit and computational loads so that we use block classification for the selective motion estimation in the high frequency subbands to compensate these problems. In result, we could reduce the bit rate and computational load at the similar image quality with conventional MRME. The superiority of the proposed algorithm was confirmed by the computer simulation.
Motion estimation plays an important role for video coding. In this paper, we derive optimal search patterns for fast block matching motion estimation. By analyzing the block matching algorithm as a function of block shape and size, we can find an optimal search pattern for initial motion estimation. The proposed idea, which has been verified experimentally by computer simulations, can provide an analytical basis for the current MPEG-2 proposals. In order to choose a more compact search pattern for BMA, we exploit the statistical relationship between the motion and the frame difference of each block.
Motion estimation technique has been used to increase video compression rates in motion video applications. One of the important algorithms to implement the motion estimation technique is search algorithm. Among many search algorithms, the H.263 adopted the Nearest Neighbors algorithm for fast search. In this paper, motion estimation block for the Nearest Neighbors algorithm is designed on FPGA and coded using VHDL and simulated under the Xilinx foundation environments. In the experiment results, we verified that the algorithm was properly designed and performed on the Xilinx FPGA(XCV300Q240)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.