This paper presents the crew members fatigue survey in order to understand the current state of various fatigue causal factors and personnel fatigue subjective symptoms, and then analyzes the survey items. The results of this survey are as follows. Firstly, many crew members were struggling with the lack of sleep and rest hour. Secondly, environmental factors such as weather, ship motion and vibration, noise, accommodation condition etc. disturbed the sleep of crew members. In third, their duty hours were more than 10 hours per day in certain types of ship. In fourth, they felt fatigue a lot when they were on board because of the workload and stress. Lastly, in some measurement items of fatigue symptoms(physical, mental, emotional), many crew members were experiencing more than moderate fatigue symptoms.
The Optical Wide-field patroL-Network (OWL-Net) is a global optical network for Space Situational Awareness in Korea. The primary operational goal of the OWL-Net is to track Low Earth Orbit (LEO) satellites operated by Korea and to monitor the Geostationary Earth Orbit (GEO) region near the Korean peninsula. To obtain dense measurements on LEO tracking, the chopper system was adopted in the OWL-Net's back-end system. Dozens of angle-only measurements can be obtained for a single shot with the observation mode for LEO tracking. In previous work, the reduction process of the LEO tracking data was presented, along with the mechanical specification of the back-end system of the OWL-Net. In this research, we describe an integrity assessment method of time-position matching and verification of results from real observations of LEO satellites. The change rate of the angle of each streak in the shot was checked to assess the results of the matching process. The time error due to the chopper rotation motion was corrected after re-matching of time and position. The corrected measurements were compared with the simulated observation data, which were taken from the Consolidated Prediction File from the International Laser Ranging Service. The comparison results are presented in the In-track and Cross-track frame.
Satyam Tiwari;Sarat K. Das;Madhumita Mohanty;Prakhar
Geomechanics and Engineering
/
v.37
no.5
/
pp.475-498
/
2024
The prediction of the susceptibility of soil to liquefaction using a limited set of parameters, particularly when dealing with highly unbalanced databases is a challenging problem. The current study focuses on different ensemble learning classification algorithms using highly unbalanced databases of results from in-situ tests; standard penetration test (SPT), shear wave velocity (Vs) test, and cone penetration test (CPT). The input parameters for these datasets consist of earthquake intensity parameters, strong ground motion parameters, and in-situ soil testing parameters. liquefaction index serving as the binary output parameter. After a rigorous comparison with existing literature, extreme gradient boosting (XGBoost), bagging, and random forest (RF) emerge as the most efficient models for liquefaction instance classification across different datasets. Notably, for SPT and Vs-based models, XGBoost exhibits superior performance, followed by Light gradient boosting machine (LightGBM) and Bagging, while for CPT-based models, Bagging ranks highest, followed by Gradient boosting and random forest, with CPT-based models demonstrating lower Gmean(error), rendering them preferable for soil liquefaction susceptibility prediction. Key parameters influencing model performance include internal friction angle of soil (ϕ) and percentage of fines less than 75 µ (F75) for SPT and Vs data and normalized average cone tip resistance (qc) and peak horizontal ground acceleration (amax) for CPT data. It was also observed that the addition of Vs measurement to SPT data increased the efficiency of the prediction in comparison to only SPT data. Furthermore, to enhance usability, a graphical user interface (GUI) for seamless classification operations based on provided input parameters was proposed.
Uncertainty of the model, system delay and drive dynamics can be considered as normal uncertainties, and the main source of uncertainty in the seismic control system is related to the nature of the simulated seismic error. In this case, optimizing the management strategy for one particular seismic record will not yield the best results for another. In this article, we propose a framework for online management of active structural management systems with seismic uncertainty. For this purpose, the concept of reinforcement learning is used for online optimization of active crowd management software. The controller consists of a differential controller, an unplanned gain ratio, the gain of which is enhanced using an online reinforcement learning algorithm. In addition, the proposed controller includes a dynamic status forecaster to solve the delay problem. To evaluate the performance of the proposed controllers, thousands of ground motion data sets were processed and grouped according to their spectrum using fuzzy clustering techniques with spatial hazard estimation. Finally, the controller is implemented in a laboratory scale configuration and its operation is simulated on a vibration table using cluster location and some actual seismic data. The test results show that the proposed controller effectively withstands strong seismic interference with delay. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results is believed to achieved in the near future by the ongoing development of AI and control theory.
Park, Min-Seok;Jo, Byung-Wan;Lee, Jungwhee;Kim, Sungkon
KSCE Journal of Civil and Environmental Engineering Research
/
v.28
no.5A
/
pp.673-683
/
2008
This study improved the existing method of using the longitudinal strain and concept of influence line to develop Bridge Weigh-in-Motion system without axle detector using the dynamic strain of the bridge girders and concrete slab. This paper first describes the considered algorithms of extracting passing vehicle information from the dynamic strain signal measured at the bridge slab, girders, and cross beams. Two different analysis methods of 1) influence line method, and 2) neural network method are considered, and parameter study of measurement locations is also performed. Then the procedures and the results of field tests are described. The field tests are performed to acquire training sets and test sets for neural networks, and also to verify and compare performances of the considered algorithms. Finally, comparison between the results of different algorithms and discussions are followed. For a PSC I-girder bridge, vehicle weight can be calculated within a reasonable error range using the dynamic strain gauge installed on the girders. The passing lane and passing speed of the vehicle can be accurately estimated using the strain signal from the concrete slab. The passing speed and peak duration were added to the input variables to reflect the influence of the dynamic interaction between the bridge and vehicles, and impact of the distance between axles, respectively; thus improving the accuracy of the weight calculation.
Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui;Noh, Gyeong Woon
The Korean Journal of Nuclear Medicine Technology
/
v.22
no.1
/
pp.15-22
/
2018
Purpose Respiratory motion during PET/MRI acquisition may result in image blurring and error in measurement for volume and quantification of lesion. The aim of this study was to evaluate changes of quantitative accuracy, tumor size and image quality by applying MR based respiratory motion correction technique (MBRMCT) using integrated PET/MR scanner. Materials and Methods Data of 30 patients (aged $62.5{\pm}10.2y$) underwent $^{18}F-FDG$ liver PET/MR (Biograph mMR 3.0T, Siemens) study were collected. PET listmode data for 7 minutes was simultaneously acquired with maximum average gate (MAG), minimum time gate (MTG) and non gate (NG) T1 weighted MR images. Gated PET reconstruction was performed using mu-maps generated from MAG and MTG by setting 35% of efficiency window. Maximum SUV ($SUV_{max}$), peak SUV ($SUV_{peak}$), tumor size and full width at half maximum (FWHM) in the z-axis direction of MAG, MTG and NG PET images were evaluated. Results Compared to NG, mean $SUV_{max}$ and $SUV_{peak}$ were increased in MAG 13.15%(p<0.0001), 8.66%(p<0.0001), MTG 13.27%(p<0.0001), 8.80%(p<0.0001) and mean tumor size and FWHM were decreased in MAG 14.47%(p<0.0001), 15.49%(p=0.0004), MTG 14.89%(p<0.0001), 15.79%(p=0.0003) respectively. Mean $SUV_{max}$ and $SUV_{peak}$ of MTG were increased by 0.07%(p=0.8802), 0.13%(p=0.7766). Mean tumor size and FWHM of MTG were decreased by 0.49%(p=0.2786), 0.36%(p=0.2488) compared to MAG. There was no statistically significant difference between MAG and MTG which increase total scan time for about 7 and 2 minutes. Conclusion SUV, accuracy of tumor size and spatial resolution were improved in both of MAG and MTG by applying MBRMCT without installing additional hardware in liver PET/MR study. More accurate information can be provided with the increase of 2 minutes scan time if applying MTG of MBRMCT to various abdominal PET/MR studies affected by respiratory motion.
Studies on target motion in 4-dimensional radiotherapy are being world-widely conducted to enhance treatment record and protection of normal organs. Prediction of tumor motion might be very useful and/or essential for especially free-breathing system during radiation delivery such as respiratory gating system and tumor tracking system. Neural network is powerful to express a time series with nonlinearity because its prediction algorithm is not governed by statistic formula but finds a rule of data expression. This study intended to assess applicability of neural network method to predict tumor motion in 4-dimensional radiotherapy. Scaled Conjugate Gradient algorithm was employed as a learning algorithm. Considering reparation data for 10 patients, prediction by the neural network algorithms was compared with the measurement by the real-time position management (RPM) system. The results showed that the neural network algorithm has the excellent accuracy of maximum absolute error smaller than 3 mm, except for the cases in which the maximum amplitude of respiration is over the range of respiration used in the learning process of neural network. It indicates the insufficient learning of the neural network for extrapolation. The problem could be solved by acquiring a full range of respiration before learning procedure. Further works are programmed to verify a feasibility of practical application for 4-dimensional treatment system, including prediction performance according to various system latency and irregular patterns of respiration.
Kim, Gha-Jung;Bae, Seok-Hwan;Lim, Chang-Seon;Kim, Chong-Yeal
Journal of Radiation Protection and Research
/
v.34
no.3
/
pp.137-143
/
2009
This study was conducted to evaluate the accuracy of CyberKnife $Synchrony^{TM}$ respiratory tracking system which was applied to Stereotactic Radiosurgery (SRS) for moving tumors in chest and abdomen with breathing motion. For accurate evaluation, gold fiducial marks were implanted into a moving phantom. The moving phantom was a cube imbedding an acryl ball as a target. The acryl ball was prescribed to 20 Gy at 70% of isodose curve in a virtual treatment and radiochromic films were inserted into the acryl ball for dose verification and tracking accuracy evaluation. The evaluation of position tracking consists of two parts: fiducial mark tracking in a stationary phantom and $Synchrony^{TM}$ respiratory tracking in a moving phantom. Each measurement was done in three directions and was repeated to 5 times. Range of position error was 0.1957 mm to 0.6520 mm in the stationary phantom and 0.4405 mm to 0.7665 mm in the moving phantom. Average position error was 0.3926 mm and 0.5673 mm in the stationary phantom and the moving phantom respectively. This study evaluates the accuracy of CyberKnife $Synchrony^{TM}$ Respiratory tracking system, and confirms the usefulness when it's used for Stereotactic Radiosurgery of body organs.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.2
/
pp.247-258
/
2003
In this paper, we present a pen-shaped input device equipped with accelerometers and gyroscopes that measure inertial movements when a user writes on 2 or 3 dimensional space with the pen. The measurements from gyroscope are integrated once to find the attitude of the system and are used to compensate gravitational effect in the accelerations. Further, the compensated accelerations are integrated twice to yield the position of the system, whose basic concept stems from the field of inertial navigation. However, the accuracy of the position measurement significantly deteriorates with time due to the integrations involved in recovering the handwriting trajectory This problem is common in the inertial navigation system and is usually solved by the periodic or aperiodic calibration of the system with external reference sources or other information in the filed of inertial navigation. In the presented paper, the calibration of the position or velocity is performed on-line and off-line. In the on-line calibration stage, the complementary filter technique is used, where a Kalman filter plays an important role. In the off-line calibration stage, the constant component of the resultant navigational error of the system is removed using the velocity information and motion detection algorithm. The effectiveness and feasibility of the presented system is shown through the experimental results.
The purpose of this study is to verify the utility of reflected photoplethysmography sensor using two green light emitting diodes that influenced by ambient light. Recently it has been studied that green light emitting diode is suitable for light source of reflected photoplethysmography sensor at low temperature and high temperature. Another study showed that, green light is better for monitoring heart rate during motion than led light. However, it has a bad characteristic about ambient light noise. To verify the utility of reflected photoplethysmography sensor using green light emitting diode, this study measures the photoplethysmography signal that is distorted by ambient light and will propose a solution. This study has two parts of research method. One is measurement system that composed sensor and board. The sensor is made up PE-foam and Non-woven fabric for flexible sensor. The photoplethysmography signal is measured by measurement board that composed high-pass filter, low-pass filter and amplifier. Ambient light source is light bulb and white light emitting diode that has three steps brightness. Photoplethysmography signal is measured with lead II electrocardiography signal at the same time and it is measured at the finger and radial artery for 1 minute, 1000 Hz sampling rate. The lead II electrocardiography signal is a standard signal for heart rate and photoplethysmography signal that measured at the finger is a standard signal for waveform. The test is repeated 3 times using three sensor. The data is processed by MATLAB to verify the utility by comparing the correlation coefficient score and heart rate. The photoplethysmography sensor using two green light emitting diodes is shown better utility than using one green light emitting diode and red light emitting diode at the ambient light. The waveform and heart rate that measured by two green light emitting diodes are more identical than others. The amount of electricity used is less than red light emitting diode and error peak detectability factor is the lowest.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.