• Title/Summary/Keyword: Motion distance

Search Result 976, Processing Time 0.024 seconds

Design of a Low Noise 6-Axis Inertial Sensor IC for Mobile Devices (모바일용 저잡음 6축 관성센서 IC의 설계)

  • Kim, Chang Hyun;Chung, Jong-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.397-407
    • /
    • 2015
  • In this paper, we designed 1 chip IC for 3-axis gyroscope and 3-axis accelerometer used for various IoT/M2M mobile devices such as smartphone, wearable device and etc. We especially focused on analysis of gyroscope noise and proposed new architecture for removing various noise generated by gyroscope MEMS and IC. Gyroscope, accelerometer and geo-magnetic sensors are usually used to detect user motion or to estimate moving distance, direction and relative position. It is very important element to designing a low noise IC because very small amount of noise may be accumulated and affect the estimated position or direction. We made a mathematical model of a gyroscope sensor, analyzed the frequency characteristics of MEMS and circuit, designed a low noise, compact and low power 1 chip 6-axis inertial sensor IC including 3-axis gyroscope and 3-axis accelerometer. As a result, designed IC has 0.01dps/${\sqrt{Hz}}$ of gyroscope sensor noise density.

An Investigation of Higher Order Forces on a Vertical Truncated Cylinder

  • Boo, Sung-Youn
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.214-214
    • /
    • 2003
  • During a model test of Hutton TLP, a "ringing" response was first observed about 20 years ago. This phenomenon is a resonant build up over the time of wave period and this burst-like motion can cause the extreme load on the TLP tether. It is often detected in the large and steep irregular waves but the generation mechanism leading to the "ringing" is not yet well understood. According to the research since then, the higher order harmonic components may account for the "ringing" on the floating offshore structures. The main purpose of the present research is, thus, to measure the higher harmonic forces exerted on a vertical truncated circular column and to compare them with available data. A vertical truncated cylinder with a diameter of 3.5inch and a draft of 10.5inch is used as a test structure, which is a scaled model of ISSC TLP column. The cylinder is installed at a distance of 45ft from the wave maker in order to avoid parasitic waves created in the wave flap. Attached to the upper part of the cylinder are two force gages to measure the horizontal (surge) and vertical (heave) forces on the cylinder. The incoming waves are Stokes waves with a slope ranging from 0.06 to 0.24. The forces and waves are measured for 60 seconds with a sampling rate of 50 Hz. Among the recorded data, the first 10 waves are excluded because of transient behavior of the waves and the next The horizontal and vertical forces are analyzed up to 5th order harmonics. The horizontal forces are then compared to the values from the theoretical model called "FNV model". In addition, force transfer functions are also investigated. Major findings in this research are below. 1) The first order forces measured are slightly larger than the theoretical values of "FNV model" 2) The "FNV model" considerably overpredicts the second order forces. 3) The larger the amplitude and more extreme the wave slope, the smaller the predictions are compared to the experimental. 4) The higher harmonic forces are significantly smaller than the first harmonic force for all wave parameters. 5) The normalized forces vs. waves slopes are almost constant in the lower harmonics but vary a lot in the higher harmonics. 6) The trend of forces is more nonlinear in the horizontal forces than in the vertical forces as the wave slope increases. 7) The part of the results above is also observed by other researchers and confirmed again through the present work.

  • PDF

A Study on the Change of Gait Temporal Parameter and Ankle Joint Moment in Patients with Achilles Tendinitis (아킬레스 건염 환자의 보행 시 고관절, 슬관절 및 족관절 모멘트의 변화에 대한 연구)

  • Yu, Jae-Ho;Lee, Gyu-Chang;Lee, Dong-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5766-5772
    • /
    • 2011
  • This study was to investigate the change of gait temporal parameter and ankle joint moment between patients with achilles tendinitis and healthy people. Thus, the purpose of this study is to clarify biomechanical change of gait in patients with achilles tendinitis and to find risk factor for prevention of achilles tendinitis. We recruited 20 patients with an achilles tendinitis and 20 healthy people. While subjects shuttled 5 times on 13 m distance with comfortable pace, we examined gait function marker with three-dimensional gait analysis system. All subject outstepped center of forceplate during gait and calculated ankle joint moment using software. Obtained data was analyzed using SPSS 12.0 software. In results, we confirmed that patients with achilles tendinitis showed reduction of extension moment in early initial phase and reduction of flexion moment in mid-stance on hip joint. and reduction of flexion moment in early initial phase and reduction of extension moment in late phase on knee joint. And we identified that patients with achilles tendinitis showed reduction of dorsiflexion moment in early stance phase, maximal plantarflexion moment in mid stance phase, and dorsiflexion moment in late stance phase. Thus, there are biomechanical changes on gait in patients with achilles tendinitis compared to healthy people. And, in clinical settings, they should focus on changes of gait in patients with achilles tendinitis. Further study will be undertaken for the biomechanical changes of patietns with achilles tendinitis.

Visual Specificity of the Pyongyang Landscape - Perspectives of North Korea Tourism - (서구권의 북한 관광을 통해 본 평양 경관의 시각적 특수성)

  • Ahn, Jin-hee;Pae, Jeong-Hann
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.4
    • /
    • pp.66-74
    • /
    • 2016
  • In what way is the urban landscape of North Korea used today, and what features do people prefer in the North Korean landscape? This study analyzed the characteristics of Pyongyang landscapes and their effects, based on an analysis of Western tourists motivation for tourism in North Korea and preferred enjoyment-seeking experiences. Using data from the tourist agency specializing in Western tourism in North Korea and a location based photo-sharing service, the study interprets the visual distinctiveness of Pyongyang landscape. The study concluded that widely known risk to travelers in North Korea is in fact an attraction, making people want to visit directly. However, this risk was mitigated in practical experience by the overall intermediation of the tourism agency and locals' conscious behavior to keep their distance from foreigners. Next, the scope of National ritual attributes was expanded to the locals' daily life as well as large-scale events such as mass games and military parades only if for national holidays. Also, the most preferred factors contributing to North Korean tourism were based on departure from routine through mobilization of the residents. This indicates the extension that the nature of North Korea as a theater state. The Pyongyang landscape represents a world politically isolated, people's congregated motion to display to the world, and people's lives hidden beneath a veil. These visualities fulfill the fantasy of Westerners regarding North Korea. Furthermore, these are superficial images that help create a basis to maintain the North Korea regime.

Modeling of Visual Attention Probability for Stereoscopic Videos and 3D Effect Estimation Based on Visual Attention (3차원 동영상의 시각 주의 확률 모델 도출 및 시각 주의 기반 입체감 추정)

  • Kim, Boeun;Song, Wonseok;Kim, Taejeong
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.609-620
    • /
    • 2015
  • Viewers of videos are likely to absorb more information from the part of the screen that attracts visual attention. This fact has led to the visual attention models that are being used in producing and evaluating videos. In this paper, we investigate the factors that are significant to visual attention and the mathematical form of the visual attention model. We then estimated the visual attention probability using the statistical design of experiments. The analysis of variance (ANOVA) verifies that the motion velocity, distance from the screen, and amount of defocus blur affect human visual attention significantly. Using the response surface modeling (RSM), we created a visual attention score model that concerns the three factors, from which we calculate the visual attention probabilities (VAPs) of image pixels. The VAPs are directly applied to existing gradient based 3D effect perception measurement. By giving weights according to our VAPs, our algorithm achieves more accurate measurement than the existing method. The performance of the proposed measurement is assessed by comparing them with subjective evaluation as well as with existing methods. The comparison verifies that the proposed measurement outperforms the existing ones.

3-D Kinematic Analysis According to Open Stance Patterns During Forehand Stroke in Tennis (테니스 포핸드 스트로크 동안 오픈스탠스 조건에 따른 3차원 운동학적 분석)

  • Choi, Ji-Young;Kim, Ro-Bin
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.161-173
    • /
    • 2005
  • Recently among several tennis techniques forehand stroke has been greatly changed in the aspect of spin, grip and stance. The most fundamental factor among the three factors is the stance which consists of open, square and closed stance. The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle according to open stance patterns during forehand stroke in tennis. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVlEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and racket head angle were defined 1. In three dimensional maximum linear velocity of racket head the X axis showed $11.41{\pm}5.27m/s$ at impact, not the Y axis(horizontal direction) and the z axis(vertical direction) maximum linear velocity of racket head did not show at impact but after impact this will resulted influence upon hitting ball It could be suggest that Y axis velocity of racket head influence on ball direction and z axis velocity influence on ball spin after impact. the stance distance between right foot and left foot was mean $74.2{\pm}11.2m$. 2. The three dimensional anatomical angular displacement of shoulder joint showed most important role in forehand stroke. and is followed by wrist joints, in addition the movement of elbow joints showed least to the stroke. The three dimensional anatomical angular displacement of racket increased flexion/abduction angle until the impact. after impact, The angular displacement of racket changed motion direction as extension/adduction. 3. The three dimensional anatomical angular displacement of trunk in flexion-extension showed extension all around the forehand stroke. The angular displacement of trunk in adduction-abduction showed abduction at the backswing top and adduction around impact. while there is no significant internal-external rotation 4. The three dimensional anatomical angular displacement of hip joint and knee joint increased extension angle after minimum of knee joint angle in the forehand stroke, The three dimensional anatomical angular displacement of ankle joint showed plantar flexion, internal rotation and eversion in forehand stroke. it could be suggest that the plantar pressure of open stance during forehand stroke would be distributed more largely to the fore foot. and lateral side.

Analysis of Characteristics of Horizontal Response Spectrum of Ground Motions from 19 Earthquakes (국내 관측자료를 이용한 수평 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.399-407
    • /
    • 2010
  • The horizontal response spectra using the observed ground motions from the recent more than 19 macro earthquakes were analysed and then were compared to both the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings (1997). 130 horizontal ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum have strong dependency on epicentral distance. The results also showed that the horizontal response spectra revealed much higher values for frequency bands above 5 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed much higher values for the frequency bands below 0.3 second than the Korean Standard Response Spectrum (SD soil condition). These spectral values dependent on frequency could be related to characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of horizontal seismic design response spectrum should be considered more significantly for the frequency bands above 5 Hz.

Characteristics of Ocean Scanning Multi-spectral Imager(OSMI) (Ocean Scanning Multi-spectral Imager (OSMI) 특성)

  • Young Min Cho;Sang-Soon Yong;Sun Hee Woo;Sang-Gyu Lee;Kyoung-Hwan Oh;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.223-231
    • /
    • 1998
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-Purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a whisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of less than 1 km over the entire field-of-view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-orbit image data storage. The instrument also performs sun calibration and dark calibration for on-orbit instalment calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400 nm to 900 nm using a Charge Coupled Device (CCD) Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands after launch. The instrument performances are fully measured for 8 basic spectral bands centered at 412, 443, 490, 510, 555, 670, 765 and 865 nm during ground characterization of instalment. In addition to the ground calibration, the on-orbit calibration will also be used for the on-orbit band selection. The on-orbit band selection capability can provide great flexibility in ocean color monitoring.

Analysis of Ground-Motion Characteristics of the 2004 Offshore Uljin Earthquake through Atmospheric Infrasound Observation (인프라사운드 관측을 통한 2004년 울진해역지진의 지반운동 특성 분석)

  • Che, Il-Young;Yun, Yeo-Woong;Lim, In Seub
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.647-657
    • /
    • 2020
  • Infrasound signals associated with the 29 May 2004 offshore Uljin earthquake (Mw 5.1) were recorded at infrasound arrays of CHNAR (epicentral distance of 321 km) and TJNAR (256 km). Back-azimuths, indicating the directions to source locations, varied more than 28° broadly for the long-lasting signals over several minutes. From the analysis of the back-projecting location method and attenuation correction for infrasound propagation, the infrasound waves were to be generated by the interaction (diffraction) between seismic waves and topography in an area of ~4,600 ㎢ connecting the Samcheok-Uljin-Pohang regions. The maximum sound source pressure (BSP) was estimated to be 11.1 Pa. This result was consistent with the peak sound pressure (PSP) calculated by the Rayleigh integral approximation to the peak ground acceleration (PGA) dataset. In addition, the minimum PGA that was detectable at the two arrays was estimated to be ~3.0 cm s-2. Although the earthquake occurred offshore, diffracted infrasound signals were effectively generated by ground motions when seismic surface waves passed through high-topographic regions in the eastern Korean Peninsula. The relationship between infrasound source pressure and PGA can be applicable to characterize the ground motions in areas with insufficient seismological observatories.

Effect of Mechanical Thermal Massage Inducing Gradual Spinal Segmentation on the Improvement of Pain (단계적 척추 분절운동을 유도하는 기계식 온열 마사지가 통증 개선에 미치는 영향)

  • Hyeun-Woo, Choi;Do-Hyun, Ahn;Kyung-Mi, Jung;Na-Young, Kim;Ji-Eun, Lee;Jong-Min, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.879-887
    • /
    • 2022
  • In this study, we tried to confirm whether the mechanical sequential elevation method of the body pressure measuring bed actually induces segmental motion for each part of the spine. To this end, a lateral X-ray examination was performed, and it was confirmed that the sequential pressure device induces a step-wise segmentation of the spine by mechanically lifting each part of the spine vertically. Then, pain, walking ability, and depression scale were measured and analyzed in subjects who were aware of back pain. VAS(p<0.05) and ODI(p<0.05) for 10 days tended to decrease in average after bed use. In the gait ability test(p<0.05), as the number of times of bed use increased, the moving time in the test decreased and the moving distance increased. In addition, GSDDF(p<0.05) decreased after bed use. As a result, it was confirmed that the spinal segmentation caused by the heat and acupressure provided by the bed affected gait and depression as well as pain relief.