• Title/Summary/Keyword: Motion detection

Search Result 1,054, Processing Time 0.036 seconds

A Video Traffic Flow Detection System Based on Machine Vision

  • Wang, Xin-Xin;Zhao, Xiao-Ming;Shen, Yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1218-1230
    • /
    • 2019
  • This study proposes a novel video traffic flow detection method based on machine vision technology. The three-frame difference method, which is one kind of a motion evaluation method, is used to establish initial background image, and then a statistical scoring strategy is chosen to update background image in real time. Finally, the background difference method is used for detecting the moving objects. Meanwhile, a simple but effective shadow elimination method is introduced to improve the accuracy of the detection for moving objects. Furthermore, the study also proposes a vehicle matching and tracking strategy by combining characteristics, such as vehicle's location information, color information and fractal dimension information. Experimental results show that this detection method could quickly and effectively detect various traffic flow parameters, laying a solid foundation for enhancing the degree of automation for traffic management.

A Motion-Adaptive De-interlacing Method using Motion Compensated Interpolation (움직임 보상을 통한 움직임 기반의 De-interlacing 기법)

  • 이성규;강석규;이동호
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.371-374
    • /
    • 2001
  • 본 논문에서는 움직임 보상을 이용한 Motion-Adaptive De-interlacing Method를 제안 한다. 정확한 움직임 추정을 위해서 Pre-filter로서 EBMF(Edge Based Median Filter)를 사용하며 새로운 Block Matching Method를 제안한다. Temporal Filter로서 Motion Missing Error를 제거하기 위해 입력 영상의 움직임 영역에 따라 각각 다른 임계 값을 적용하는 AMPDF(Adaptive Minimum Pixel Difference Filter)를 적용하였으며 MMD(Maximum Motion Detection)와 SAD(Sum of Difference)를 이용하여 빠른 움직임 영역에서 화질을 향상시켰다. 최종적으로 잘못된 움직임 보상에 기인하는 화질의 열화를 방지하기 위한 Motion Correction Filter를 제안한다.

  • PDF

Video Motion Analysis for Sudden Death Detection During Sleeping (수면 중 돌연사 감지를 위한 비디오 모션 분석 방법)

  • Lee, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.603-609
    • /
    • 2018
  • Sudden death during sleep often occurs in different age groups. To prevent an unexpected sudden death, sleep monitoring is required. This paper presents a video analysis method to detect sudden death without using any attachable sensors. In the proposed method, a motion magnification technique detects even very subtle motion during sleep. If the magnification cannot detect motion, the proposed method readily decides on abnormal status (possibly sudden death). Experimental results on two kinds of sleep video show that motion magnification-based video analysis could be useful for discriminating sleep (with very subtle motion) from sudden death.

A Fast Motion Detection and Tracking Algorithm for Automatic Control of an Object Tracking Camera (객체 추적 카메라 제어를 위한 고속의 움직임 검출 및 추적 알고리즘)

  • 강동구;나종범
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.181-191
    • /
    • 2002
  • Video based surveillance systems based on an active camera require a fast algorithm for real time detection and tracking of local motion in the presence of global motion. This paper presents a new fast and efficient motion detection and tracking algorithm using the displaced frame difference (DFD). In the Proposed algorithm, first, a Previous frame is adaptively selected according to the magnitude of object motion, and the global motion is estimated by using only a few confident matching blocks for a fast and accurate result. Then, a DFD is obtained between the current frame and the selected previous frame displaced by the global motion. Finally, a moving object is extracted from the noisy DFD by utilizing the correlation between the DFD and current frame. We implement this algorithm into an active camera system including a pan-tilt unit and a standard PC equipped with an AMD 800MHz processor. The system can perform the exhaustive search for a search range of 120, and achieve the processing speed of about 50 frames/sec for video sequences of 320$\times$240. Thereby, it provides satisfactory tracking results.

Development of CW Doppler Sensor Signal Processing Board for Motion Detection (움직임 감지를 위한 CW도플러 센서 신호처리 보드 개발)

  • Han, Byung-hun;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.866-869
    • /
    • 2015
  • In this paper, we propose a device for detect front object using low-price the CW Doppler sensor to prevent safety accident such as a bicycle, an electric wheelchair users. For this propose, we develop a signal process board and the object motion detect algorithm using to analyzing output signal of the CW Doppler sensor. Output signal from CW Doppler sensor is analog I and analog Q. The CW Doppler sensor shows phase I and phase Q of object differently when the object approach, stop, drop by sensor. We develop an algorithm that can detect object by discrimination information of phase using the CW Doppler sensor. The verification use firmware of applied hardware and algorithm. Then, the motion information can be confirming output depending on motion object by experiment normally. As a result, we check that the sensing information output by following motion of object and confirm an algorithm and motion of signal processing board.

  • PDF

Blocking Artifacts Detection in Frequency Domain for Frame Rate Up-conversion (프레임율 변환을 위한 주파수 영역에서의 블로킹 현상 검출)

  • Kim, Nam-Uk;Jun, Dongsan;Lee, Jinho;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.472-483
    • /
    • 2016
  • This paper proposes a blocking artifacts detection algorithm in frequency domain for MC-FRUC (Motion Compensated Frame Rate Up-Conversion). Conventional MC-FRUC algorithms occur blocking artifacts near interpolated block boundaries since motion compensation is performed from block-based motion vector. For efficiently decreasing blocking artifacts, this paper analyses frequency characteristics of the interpolated frame and reduces blocking artifacts on block boundaries. In experimental results the proposed method shows better subjective quality than some conventional FRUC method and also increases the PSNR(Peak Signal to Noise Ratio) value on average 0.45 dB compared with BDMC(Bi-Directional Motion Compensation).

Determination of Optimum Threshold for Accuracy of People-counting System Based on Motion Detection

  • Ryu, Hanseul;Song, Junho;Lee, Boram;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.5
    • /
    • pp.299-304
    • /
    • 2015
  • Objectives: A people-counting system measures real-time occupancy through motion detection. Accurate people-counting can be used to calculate suitable ventilation demands. This study determined the optimum motion threshold for a people-counting system. Methods: In a closed room with two occupants moving constantly, different thresholds were tested for the accuracy of a people-counting system. The experiments were conducted at 150, 300, 450 and 600 lux. These levels of brightness included the illumination levels of most public indoor areas. The experiments were repeated with three types of clothing coloration. Results: Overall, a threshold of 16 provided the lowest mean error percentage for the people-counting system. Brightness and clothing color did not have a significant impact on the results. Conclusion: A people-counting system could be used with threshold of 16 for most indoor environments.

Moving object segmentation using Markov Random Field (마코프 랜덤 필드를 이용한 움직이는 객체의 분할에 관한 연구)

  • 정철곤;김중규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.221-230
    • /
    • 2002
  • This paper presents a new moving object segmentation algorithm using markov random field. The algorithm is based on signal detection theory. That is to say, motion of moving object is decided by binary decision rule, and false decision is corrected by markov random field model. The procedure toward complete segmentation consists of two steps: motion detection and object segmentation. First, motion detection decides the presence of motion on velocity vector by binary decision rule. And velocity vector is generated by optical flow. Second, object segmentation cancels noise by Bayes rule. Experimental results demonstrate the efficiency of the presented method.

Motion Detection using Adaptive Background Image and A Net Model Pixel Space of Boundary Detection (적응적 배경영상과 그물형 픽셀 간격의 윤곽점 검출을 이용한 객체의 움직임 검출)

  • Lee Chang soo;Jun Moon seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.92-101
    • /
    • 2005
  • It is difficult to detect the accurate detection which leads the camera it moves follows in change of the noise or illumination and Also, it could be recognized with backgound if the object doesn't move during hours. In this paper, the proposed method is updating changed background image as much as N*M pixel mask as time goes on after get a difference between imput image and first background image. And checking image pixel can efficiently detect moving by computing fixed distance pixel instead of operate all pixel. Also, set up minimum area of object to use boundary point of object abstracted through checking image pixel and motion detect of object. Therefore motion detection is available as is fast and correct without doing checking image pixel every Dame. From experiment, the designed and implemented system showed high precision ratio in performance assessment more than 90 percents.

Pothole Detection using Intensity and Motion Information (명암과 움직임 정보를 이용한 포트홀 검출)

  • Kim, Young-Ro;Jo, Youngtae;Ryu, Seungki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.137-146
    • /
    • 2015
  • In this paper, we propose a pothole detection method using various features of intensity and motion. Segmentation, decision steps of pothole detection are processed according to the values which are derived from feature characteristics. For segmentation using intensity, we use a binarization method using histogram to separate pothole region from background. For segmentation using motion, we filter using high pass filter and get standard deviation value. This value is divided by regression value according to camera environment such as photographing angle, height, velocity, etc. We get binary image by histogram based binarization. For decision, candidate regions are decided whether pothole or not using comparison of candidate and background's features. Experimental results show that our proposed pothole detection method has better results than existing methods and good performance in discrimination between pothole and similar patterns.