• Title/Summary/Keyword: Motion control system

Search Result 2,580, Processing Time 0.046 seconds

Anti-Sway Control System Design for the Container Crane

  • An, Sang-Back;Kim, Young-Bok;Kang, Gi-Bong;Zhai, Guisheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1404-1409
    • /
    • 2003
  • The sway control problem of the pendulum motion of the container crane hanging on the trolley, which transports containers from the container ship to the truck, is considered in this paper. In the container crane control problem, the main issue is to suppress the residual swing motion of the container at the end of the acceleration, deceleration or the case of that the unexpected disturbance input exists. For this problem, in general, the trolley motion control strategy is introduced and applied to real plants. In this paper, we suggest a new type of swing motion control system for a crane system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mass applies inertial control forces to the spreader of the container crane to reduce the swing motion in the desired manner. In this paper, we consider that the length of the rope varies is we design the anti-sway control system based on LMI(linear matrix inequality) approach. And, it will be shown that the proposed control strategy is useful and it can be easily applicable to the real world. So, in this study, we investigate usefulness of the proposed anti-sway system and evaluate system performance from simulation and experimental studies.

  • PDF

3-Axis Gyro Sensor based on Servo Motion Control System (3-Axis Gyro Sensor based on Servo Motion Control 시스템 개발)

  • Sun, Nana;Lee, Won-Bu;Park, Soo-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.725-727
    • /
    • 2010
  • For simulation of Boat motion, pitch, motion element of roll and yaw direction could simulated. The combination of the marine use various multi sensor surveillance system technology with the development of servo motion control algorithm and gyro sensor in six freedom motion is implemented to analyze the movement response. The stabilization of the motion control is developed and Nano driving Precision Pan-Tilt/Gimbal system is obtained from the security positioning cameras with ultra high speed device is used to carry out the exact behavior of the device.

  • PDF

Measurement and Control of Swing Motion Using Image Sensor (이미지 센서를 이용한 크레인의 흔들림 계측 및 제어)

  • Kim, Y.B.;Kawai, H.;Choi, Y.W.;Lee, K.S.;Chae, G.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.103-108
    • /
    • 2007
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In many papers reported by us, we suggested a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. The measuring system is based on laser sensor or others. However it is not so useful in real world. Especially, in this paper, the image sensor is used to measures the motions of the spreader and the measured data are fed back to the controller in real time. The applied image processing technique is a kind of robust template matching method which is named Vector Code Correlation (VCC) and devised to consider the real environmental conditions. And the $H_{\infty}$ based control technique is applied to suppress swing motion of the crane. And the experimental result shows that the proposed measurement system based on image sensor and control system is useful and robust to disturbances.

  • PDF

A Study on the Robust Motion Control Technology of Articulated Robot Arm (다관절 로봇 아암의 강인한 모션 제어방법에 관한 연구)

  • Ha, Eon-Tae;Kim, Hyun-Geon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.119-128
    • /
    • 2015
  • In this paper, we propose a new motion control technology to design robust control system of industrial robot. The system modeling of robotic manipulation tasks with constraints is presented, and the control architecture for unconstrained and constrained motion system with parametric uncertainties is synthesized. The optimal reference of robot manipulator is generated by the reference controller as a discrete state system and the control behavior of constrained system which has poor modeling information and time-invariant constraint function is improved motion control system is successfully evaluated by experiment to the desired tasks.

Base Acceleration Feedforward Control For An Active Magnetic Bearing System Subject To Base Motion (베이스 가진을 받는 전자기 베어링계의 베이스 가속도 피드포워드 제어)

  • Kang, Min-Sig
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.399.2-399
    • /
    • 2002
  • This paper concerns on a non-rotating single-DOF beam-active magnetic bearing(AMB) system subject to arbitrary shaped base motion. In such a system, it is desirable to retain the beam within the predetermined air-gap under foundation excitation. Motivated form this, an adaptive acceleration feedforward control is proposed to reduce the base motion response without deteriorating other feedback control performances. Experimental results demonstrate the effectiveness of the acceleration feedforward control.

  • PDF

A study on the efficient calculation method of the motion data in the industrial robot (산업용 로보트의 효율적인 작동 데이터 산출방법에 관한 연구)

  • 이순요;권규식;노근래
    • Journal of the Ergonomics Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.21-28
    • /
    • 1990
  • The robot motion control in the industrial robot is generally executed by the teach pendant. But, it requires much teaching time and workload to the operators. This study suggests the use of the robot motion control method by the computed keyboard in the industrial robot instead of the teach pendant. TES/CCS(Teaching Expert System/Cartesian Coordinate System) and TES/WCS(Teaching Expert System/World Coordinate System) that have been proposed to improve the robot motion control are applied for this concept. This study is intended to improve the robot motion control in TES/CCS. Parameter limitation problems in getting the motion data on position and posture of the robot in macro motion control are solved by proposed geometric algorithm. This result demonstrates reduction of the average teaching task time to the teaching position.

  • PDF

An intelligent semi-active isolation system based on ground motion characteristic prediction

  • Lin, Tzu-Kang;Lu, Lyan-Ywan;Hsiao, Chia-En;Lee, Dong-You
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.53-64
    • /
    • 2022
  • This study proposes an intelligent semi-active isolation system combining a variable-stiffness control device and ground motion characteristic prediction. To determine the optimal control parameter in real-time, a genetic algorithm (GA)-fuzzy control law was developed in this study. Data on various types of ground motions were collected, and the ground motion characteristics were quantified to derive a near-fault (NF) characteristic ratio by employing an on-site earthquake early warning system. On the basis of the peak ground acceleration (PGA) and the derived NF ratio, a fuzzy inference system (FIS) was developed. The control parameters were optimized using a GA. To support continuity under near-fault and far-field ground motions, the optimal control parameter was linked with the predicted PGA and NF ratio through the FIS. The GA-fuzzy law was then compared with other control laws to verify its effectiveness. The results revealed that the GA-fuzzy control law could reliably predict different ground motion characteristics for real-time control because of the high sensitivity of its control parameter to the ground motion characteristics. Even under near-fault and far-field ground motions, the GA-fuzzy control law outperformed the FPEEA control law in terms of controlling the isolation layer displacement and the superstructure acceleration.

A study on ship motion control system design for developing autonomous system: Experimental study (자율운항시스템 개발을 위한 선박운동제어에 관한 연구 : 실험적 연구)

  • KIM, Kyong-Hyon;SUH, Jin-Ho;KIM, Young-Bok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.2
    • /
    • pp.172-180
    • /
    • 2019
  • In this study, a ship motion control system design method is introduced for autonomous ships. Some related research results and technologies for autonomous ships have already been developed and applied to testing ships. Recently, the Norwegian Maritime Authority and the Coastal Administration have signed an agreement and started to test autonomous ships in the defined area. Considering recent technology trends and background, in this paper, the authors also try to develop autonomous ship control technologies. In the designed control system, an observer is introduced to estimate unmeasurable system states. Based on the servosystem with state estimator, ship motion control experiment is performed to evaluate control performance using a model ship in water basin.

A PMSM Motion Control System with Direct Torque Control (직접토크제어에 의한 PMSM의 위치제어 시스템)

  • 김남훈
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.615-619
    • /
    • 2000
  • This paper presents an implementation of digital motion control system of Surface Permanent-Magnet Synchronous Motor(SPMSM) vector drives with a direct torque control(DTC) using the 16bit DSP TMS320F240 The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent control for motors which can be yield enhanced operation fewer system components lower system cost increased efficiency and high performance The system presented are stator flux and torque observer of stator flux feedback model that inputs are current and voltage sensing of motor terminal and angle for a low speed operating area two hysteresis band controllers an optimal switching look-up table and IGBT voltage source inverter by using fully integrated control software. The developed control system are shown a good motion control response characteristic results and high performance features using 1.0Kw purposed servo drive SPMSM.

  • PDF

Development and Evaluation of 3-Axis Gyro Sensor based Servo motion control (3-Axis Gyro Sensor based on Servo Motion Control 장치의 성능평가기준 및 시험규격개발)

  • Lee, WonBu;Chang, Chulsoon;Kim, JeongKuk;Park, Soohong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.627-630
    • /
    • 2009
  • The combination of the marine use various multi sensor surveillance system technology with the development of servo motion control algorithm and gyro sensor in six freedom motion is implemented to analyze the movement response. The stabilization of the motion control is developed and Nano driving Precision Pan-Tilt/Gimbal system is obtained from the security positioning cameras with ultra high speed device is used to carry out the exact behavior of the device. The exact behavior will be used to make a essential equipment. Finally the development of the Nano Driving Multi Sensor, Nano of Surveillance System Driving Precision Pan-Tilt/Gimbal optimal design and production, 3-aix Gyro Sensor based with Servo Motion Control algorithm development, Image trace video software and hardware tracking the development is organized and discuss in details. The development of the equipment and the system integration are fully experimented and verified.

  • PDF