• Title/Summary/Keyword: Motion capture analysis

Search Result 213, Processing Time 0.026 seconds

Oil Carrier, Development of on Optimized Anti-Splash Device Model for COT Vent Pipe (유조선, COT Vent Pipe용 Anti-Splash Device 최적 모델 개발)

  • Na, Ok-kyun;Jeon, Young-Soo;Park, Sin-kil;Kim, Jong-Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.50-55
    • /
    • 2015
  • Application of newly conceptualized Anti-Splash Devices designed for COT vent pipes were studied on a P/V valve located on the upper deck of an oil carrier vessel. Anti-Splash devices are used in the shipbuilding industry in order to avoid oil overflow and spray accidents caused by excess pressure and vacuum condition in the cargo oil tanks. These conditions are caused by the transverse and longitudinal sloshing forces that arise from ship motion during sea voyages. The main issue with existing Anti-Splash device model is flux at the outlet of the Anti-Splash Device, and so, new conceptual models for the Anti-Splash device were developed and compared to existing Anti-Splash device model using CFD analysis. Transient analysis was used to capture the flow and velocity of each model and a comparative analysis was performed between old and new-concept models. This data was used to determine the optimal design parameters in order to develop an optimized Anti-Splash Device. A Factory acceptance test was performed on the new-concept models in order to verify the performance and efficiency against their design requirements and other criterion. The final step performed was to apply the optimized Anti-Splash Device models for COT vent pipes to an actual vessel and verify performance through a seawater cargo operation during a sea voyage as per the ship owner's request. The patent for the aforementioned device was obtained by the Korean Intellectual property Office dated Dec. 18th,2014.

  • PDF

Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation

  • Zhang, Zhe;Yang, Qijian;Jin, Cong
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.581-601
    • /
    • 2022
  • The main objective of this research work is to investigate the free vibration behavior of annular sandwich plates resting on the Kerr foundation at thermal conditions. This sandwich configuration is composed of two FGM face sheets as coating layer and a porous GPLRC (GPL reinforced composite) core. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the core thickness direction. To model closed-cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme is used, while the Poisson's ratio and density are computed by the rule of mixtures. Besides, the material properties of two FGM face sheets change continuously through the thickness according to the power-law distribution. To capture fundamental frequencies of the annular sandwich plate resting on the Kerr foundation in a thermal environment, the analysis procedure is with the aid of Reddy's shear-deformation plate theory based high-order shear deformation plate theory (HSDT) to derive and solve the equations of motion and boundary conditions. The governing equations together with related boundary conditions are discretized using the generalized differential quadrature (GDQ) method in the spatial domain. Numerical results are compared with those published in the literature to examine the accuracy and validity of the present approach. A parametric solution for temperature variation across the thickness of the sandwich plate is employed taking into account the thermal conductivity, the inhomogeneity parameter, and the sandwich schemes. The numerical results indicate the influence of volume fraction index, GPLs volume fraction, porosity coefficient, three independent coefficients of Kerr elastic foundation, and temperature difference on the free vibration behavior of annular sandwich plate. This study provides essential information to engineers seeking innovative ways to promote composite structures in a practical way.

Comparative Analysis of Linear and Nonlinear Projection Techniques for the Best Visualization of Facial Expression Data (얼굴 표정 데이터의 최적의 가시화를 위한 선형 및 비선형 투영 기법의 비교 분석)

  • Kim, Sung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.97-104
    • /
    • 2009
  • This paper describes comparison and analysis of methodology which enables us in order to search the projection technique of optimum for projection in the plane. For this methodology, we applies the high-dimensional facial motion capture data respectively in linear and nonlinear projection techniques. The one core element of the methodology is to applies the high-dimensional facial expression data of frame unit in PCA where is a linear projection technique and Isomap, MDS, CCA, Sammon's Mapping and LLE where are a nonlinear projection techniques. And another is to find out the methodology which distributes in this low-dimensional space, and analyze the result last. For this goal, we calculate the distance between the high-dimensional facial expression frame data of existing. And we distribute it in two-dimensional plane space to maintain the distance relationship between the high-dimensional facial expression frame data of existing like that from the condition which applies linear and nonlinear projection techniques. When comparing the facial expression data which distribute in two-dimensional space and the data of existing, we find out the projection technique to maintain the relationship of distance between the frame data like that in condition of optimum. Finally, this paper compare linear and nonlinear projection techniques to projection high-dimensional facial expression data in low-dimensional space and analyze it. And we find out the projection technique of optimum from it.

Kinematical Analysis of Side Kick Motion in Taekwon Aerobics (태권에어로빅스 옆차기동작의 운동학적 분석)

  • Yoo, Sil
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.3
    • /
    • pp.33-42
    • /
    • 2008
  • The purpose of this study was to analyze kinematic variables during Side kick motion in Taekwon Aerobics. The subjects of this study were the 7 skilled and 7 unskilled female college students. A QTM and an Auto Track were used to acquire raw data. The sampling rates camera was 100 Hz. The parameters were calculated and analyzed with Visual3D and SPSS 12.0. The results were as following; 1. In the elapsed time, there was no significance difference statically between a skilled and unskilled group. 2. In the cases of knee angle, there was significant difference statically at Maximum Knee Flexion2(p=0.046, F=4.925). 3. In the cases of knee angular velocity, there was significant difference statically at Maximum Knee Flexion1(p=0.031, F=5.940). 4. In the flexion/extension of hip angle, there was significant difference statically at Maximum Knee Flexion2(p=0.012, F=8.668). 5. In the abduction/adduction of hip angular velocity, there was significant difference statically at Minimum Knee Flexion (p=0.019, F=7.324). 6. In the external rotation/internal rotation of hip angular velocity, there was significant difference statically Minimum Knee Flexion(p=0.005, F=11.87).

A Locomotive Analysis on Forelimbs' Movement According to Change in Velocity of Horses' Quadruped Cadence (말의 4족 보법에서 속도변화에 따른 전족 움직임의 운동능력 분석)

  • Hyun, Seung-Hyun;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.483-488
    • /
    • 2015
  • Objective : The purposes of this study was to analyze the locomotive movement of forelimbs according to changes in velocities in the quadruped cadence of horses. Methods : Horses selected as subjects consisted of Jeju pony horses (heights of withers: $1.23{\pm}0.51$). Two camcorders (HDR-HC7/HDV 1080i, Sony Corp, Japan) were used to capture the movement of the horses' forelimbs at a rate of 60 frames/sec. Additionally, raw data was collected from Kwon3D XP motion analysis package ver 4.0 program (Visol, Korea) with DARTFISH (DFKREA., Korea) video software solution. The variables analyzed consisted of 1 step lengths, 1 stride lengths, stance time, swing time, 1 stride time, velocity while walking, and trot of the horses. A two-way ANOVA and paired t-test of the variables by velocity and phase were treated at .05 level of significant difference, statistically. Results : The time elapsed of walk(stance: 0.63 sec[63.86%], swing: 0.35 sec[36.14%], 1 stride time: 0.99 sec respectively) showed significant difference with more delay than that of trot(stance: 0.29 sec[45.73%], swing: 0.34 sec[54.27% ], 1 stride time: 0.63 sec respectively), and also showed significant difference at trot in interaction (stance time>tort swing>walk swing>walk stance). The 1 step lengths and stride lengths in trot showed significant difference with longer than that of walk. Velocity of Trot showed significant difference statistically with higher than that of walk Conclusion : The horses' velocity during 1 step lengths and 1 stride lengths showed a proportional relationship, but the correlation between the horses' velocity and stance time showed a negative relationship during the quadruped cadence.

Kinematic Analysis of Thoraco-Lumbar Spine in Bad Postures During Daily Life (일상 생활 중의 나쁜 자세에 따른 흉·요추 관절의 기구학 해석)

  • Han, Ah-Reum;Jeong, Ji-In;Feng, Jun;Kim, Yoon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1105-1110
    • /
    • 2012
  • The spine is one of the most important skeletal joints, and it strongly affects the health of the musculoskeletal system. A normal spine has an S-shape, and it is very important to maintain this shape. Recently, spinal diseases such as low back pain have increased rapidly, especially among the elderly. Some of these diseases are caused by congenital spinal disorders and sporting and accident injuries as well as by bad postures. Improper spinal postures could generate excessive disc pressure, which is related to degeneration and pain. Therefore, in this study, we investigated the three-dimensional kinematic parameters of the thoraco-lumbar joint in several bad postures using a motion capture analysis technique. Different bad postures created a significant amount of flexion/extension, side bending, and axial rotation angle compared with neutral postures. Further study is necessary to investigate the disc pressure and ligament force due to the increase in joint rotation from the bad postures.

Ergonomic Evaluation of Trunk-Forearm Support Type Chair

  • Lim, Seung Yeop;Won, Byeong Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.143-153
    • /
    • 2014
  • Objective: The aim of this study is to investigate the effects of trunk-forearm supported sitting on trunk flexion angle, trunk extensor fatigue and seat contact pressure. Background: The relationship between sitting posture and musculoskeletal disorders of the trunk extensor fatigue and seat contact pressure has been documented. The trunk-forearm support type ergonomic chair was devised from the fact that trunk-forearm support has been reported to reduce trunk extensor activity and discomfort. Method: Using three different sitting postures, upright ($P_1$), trunk-forearm supported ($P_2$) and normal sitting ($P_3$), six healthy subjects participated in the study. Motion capture system was used to collect head and trunk flexion angle, and surface electromyography (sEMG) was used to collect myoelectric signal of upper trapezius, lower trapezius, erector spinae, multifidus, and pressure mat system was used to measure seat contact pressure. Results: When trunk and forearm were supported by the ergonomic chair, higher head flexion angle showed upright > trunk-forearm supported > normal in order, and muscle fatigue showed less than upright and normal sitting. Mean seat contact pressure decreased 19% than upright sitting. But muscle fatigue was not affected by each condition. Conclusion: Trunk-forearm supported sitting of the ergonomic chair showed positive effect in respect of trunk and head flexion angle, trunk extensor fatigue, seat contact pressure. To acquire comprehensive understanding of the effectiveness of the ergonomic chair, further studies such as anatomical effects from measurement of external applied loading effect to the body from interface pressure analysis are required. Application: The results of the publishing trend analysis might help physiological effects of trunk-forearm support type chair.

Effects of golf drive swing on multiple functional wear wearing (다기능성 웨어 착용이 골프 드라이브 스윙에 미치는 효과)

  • Kim, Jungwoo;Park, Sunkyung;Uh, Mikyung
    • The Research Journal of the Costume Culture
    • /
    • v.22 no.4
    • /
    • pp.632-639
    • /
    • 2014
  • The purpose of this study was to verify the effect of drive swing on multiple functional wear wearing in golf. The subjects were 6 men ($22.67{\pm}0.82$ yrs, $175.42{\pm}3.42cm$, $78.75{\pm}4.78kg$), who had career each with at least 8 yers golf experience with right-hander. For kinemetical analysis, this study used equipments with 7 motion capture cameras (300Hz) and analysis program (Nexus1.5). The total time of the club head, displacement magnitude of the COM and swing plane were compared of according to functional wear wearing and non-weraing during golf drive swing. The results of the study are as follows. The total time of the club on wearing ($2.18{\pm}0.06sec$) was faster than non-wearing ($2.52{\pm}0.15sec$). Displacement magnitude of the COM on wearing ($4.06{\pm}0.67cm$) was shorter than non-wearing ($5.79{\pm}0.72cm$). Also, swing plane was found to be significantly different of 3 phase excepted BST-DS (back swing top-down swing) phase. AD-BST (address-back swing top) phase on wearing ($13.86{\pm}3.08cm$) decrease more than non-wearing ($20.82{\pm}3.99cm$), DS-IP (down swing-impact) phase on wearing ($6.25{\pm}1.35cm$) decrease more than non-wearing ($7.18{\pm}1.52cm$) and IP-FT (impact-follow though) phase on wearing ($7.93{\pm}2.09cm$) decrease more than non-wearing($9.68{\pm}2.02cm$). The multiple functional wear wearing was contribution to come close for one-plane, a long with consistency and accuracy on golf drive swing.

Analysis of Two-Way Communication Virtual Being Technology and Characteristics in the Content Industry (콘텐츠 산업에서 나타난 양방향 소통 가상존재 기술 및 특성 분석)

  • Kim, Jungho;Park, Jin Wan;Yoo, Taekyung
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.507-517
    • /
    • 2020
  • Along with the development of computer graphics, real-time rendering, motion capture, and artificial intelligence technology, virtual being that enables two-way communication has emerged in the content industry. Although the commercialization of technologies and platforms is creating a two-way communication virtual being, there is a lack of analysis of what characteristics this virtual being has and how it can be used in each field. Therefore, through technical background survey and case study for the production of virtual being, the two-way communication virtual being is analyzed on the characteristics necessary for emotional exchange. The characteristics needed for emotional exchange were divided into interaction, individuality, and autonomy, and this characteristic is classified as the focus and how two-way communication virtual being will be used in the content field. This study is expected to provide significant implications for the research of content production and utilization using virtual being as a basic study of virtual being, which analyzes the technical background and characteristics for two-way communication required for virtual being production.

Kinematic analysis of Ire hockey slap shot (아이스 하키 슬랩 샷(slap shot)의 운동학적 분석)

  • Moon, Gon-Sung;Park, Chong-Rul
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.13-28
    • /
    • 2003
  • The purpose of this study was to analyze the kinematic characteristics of Ice hockey slap shot. The subjects of this study were four professional ice hockey players. The reflective markers were attached on the anatomical boundary line of body and the subjects were asked to perform the shot. Ariel Performance Analysis System was used to capture and digitize the shooting image, the data were analyzed by LabView 6i. The results were as fellows. 1. The period of the back swing phase was $0.542{\pm}0.062sec$, the down swing phase was $0.28{\pm}0.056sec$ and the total swing time was $0.825{\pm}0.017sec$ 2. The maximum linear velocity of the stick blade for x direction was shown after 7% of impact, for y, z direction were shown before 2%, 8% of Impact. 3. The maximum velocity of each segment for the left arm was $2.35{\pm}0.05m/s$ in the upper arm, $3.56{\pm}0.34m/s$ in the forearm, $4.75{\pm}0.67m/s$ in the hand. 4. The maximum velocity of each segment for the right arm was $4.67{\pm}0.43m/s$ in the upper arm, $7.22{\pm}0.69m/s$ in the forearm, $9.42{\pm}0.89m/s$ in the hand. 5. The angle of left elbow was generally flexed from the ready stance to the impact and was $82.26{\pm}3.45^{\circ}$ the moment of Impact. 6. The angle of the left shoulder was increased ut the down swing phase and was $78.74{\pm}4.78^{\circ}$ on the moment of impact. 7. The angle of the right shoulder was decreased in the down swing phase and increased before the impact. and the angle was $51.28{\pm}3.54^{\circ}$ on the moment of impact.