• Title/Summary/Keyword: Motion Vector Prediction

Search Result 151, Processing Time 0.025 seconds

Motion Estimation and Coding Technique using Adaptive Motion Vector Resolution in HEVC (HEVC에서의 적응적 움직임 벡터 해상도를 이용한 움직임 추정 및 부호화 기법)

  • Lim, Sung-Won;Lee, Ju Ock;Moon, Joo-Hee
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.1029-1039
    • /
    • 2012
  • In this papar, we propose a new motion estimation and coding technique using adaptive motion vector resolution. Currently, HEVC encodes a video using 1/4 motion vector resolution. If there are high texture regions in a picture, HEVC can't get a performance enough. So, we insert additional 1-bit flag meaning whether motion vector resolution is 1/4 or 1/8 in PU syntax. Therefore, decoder can recognize the transmitted motion vector resolution. Experimental results show that maximum coding efficiency gain of the proposed method is up to 5.3% in luminance and 7.9% in chrominance. Average computional time complexity is increased about 33% in encoder and up to 5% in decoder.

Scalable Extension of HEVC for Flexible High-Quality Digital Video Content Services

  • Lee, Hahyun;Kang, Jung Won;Lee, Jinho;Choi, Jin Soo;Kim, Jinwoong;Sim, Donggyu
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.990-1000
    • /
    • 2013
  • This paper describes the scalable extension of High Efficiency Video Coding (HEVC) to provide flexible high-quality digital video content services. The proposed scalable codec is designed on multi-loop decoding architecture to support inter-layer sample prediction and inter-layer motion parameter prediction. Inter-layer sample prediction is enabled by inserting the reconstructed picture of the reference layer (RL) into the decoded picture buffer of the enhancement layer (EL). To reduce the motion parameter redundancies between layers, the motion parameter of the RL is used as one of the candidates in merge mode and motion vector prediction in the EL. The proposed scalable extension can support scalabilities with minimum changes to the HEVC and provide average Bj${\o}$ntegaard delta bitrate gains of about 24% for spatial scalability and of about 21% for SNR scalability compared to simulcast coding with HEVC.

Coding Efficiency Improvement for Identical Motion Information of Bi-prediction Mode within the GPB Slcice of HEVC (HEVC의 GPB 슬라이스에서 양예측 모드의 동일 움직임 정보에 대한 성능 향상 방안)

  • Kim, Sang-Min;Kim, Kyung-Yong;Park, Gwang-Hoon;Kim, Hui-Yong;Lim, Sung-Chang;Lee, Jin-Ho
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1069-1072
    • /
    • 2011
  • This paper proposes the method which reduces complexity and improves coding efficiency by solving a problem of HEVC bi-prediction. In current HM 3.0, it is frequently occurred that L0 motion information and L1 motion information are identical in blocks which are bi-predicted. In this case, L1 motion vector is replaced by non-zero motion vector which belongs to first available neighbor block of current block. If they are still identical, prediction mode is replaced by uni-prediction. As an experimental result, in LD(Low-Delay) case, decoding time is reduced roughly 2%~5% and coding gain is roughly 0.3%~0.5% compared with the HM 3.0 anchor.

A Block Matching using the Motion Information of Previous Frame and the Predictor Candidate Point on each Search Region (이전 프레임의 움직임 정보와 탐색 구간별 예측 후보점을 이용하는 블록 정합)

  • 곽성근;위영철;김하진
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.3
    • /
    • pp.273-281
    • /
    • 2004
  • There is the temporal correlation of the video sequence between the motion vector of current block and the motion vector of previous block. In this paper, we propose the prediction search algorithm for block matching using the temporal correlation of the video sequence and the center-biased property of motion vectors. The proposed algorithm determines the location of a better starting point for the search of an exact motion vector using the point of the smallest SAD(sum of absolute difference) value by the predicted motion vector from the same block of the previous frame and the predictor candidate point on each search region. Simulation results show that PSNR(Peak-to-Signal Noise Ratio) values are improved up to the 1.06㏈ as depend on the video sequences and improved about 0.19∼0.46㏈ on an average except the full search(FS) algorithm.

A New VLSI Architecture of a Hierarchical Motion Estimator for Low Bit-rate Video Coding (저전송률 동영상 압축을 위한 새로운 계층적 움직임 추정기의 VLSI 구조)

  • 이재헌;나종범
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.601-604
    • /
    • 1999
  • We propose a new hierarchical motion estimator architecture that supports the advanced prediction mode of recent low bit-rate video coders such as H.263 and MPEG-4. In the proposed VLSI architecture, a basic searching unit (BSU) is commonly utilized for all hierarchical levels to make a systematic and small sized motion estimator. Since the memory bank of the proposed architecture provides scheduled data flow for calculating 8$\times$8 block-based sum of absolute difference (SAD), both a macroblock-based motion vector (MV) and four block-based MVs are simultaneously obtained for each macroblock in the advanced prediction mode. The proposed motion estimator gives similar coding performance compared with full search block matching algorithm (FSBMA) while achieving small size and satisfying the advanced prediction mode.

  • PDF

신경회로망 벡터 양자화를 이용한 움직임 탐색 영역의 예측

  • 류대현
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.203-207
    • /
    • 1996
  • This paper describes a method for estimating motion vectors in a video sequence. In this method, we find motion vectors using the full search method from the training images and then, train the codebook of the neural networks vector quantizer using these motion vectors. A motion vector can be estimated using the codebook as a motion prediction region. The codewords in the codebook represent the motion vectors for the input image sequences. Since the codebook is used as the search region for estimating the motion vectors, search points and computation can be reduced compared with the full search block matching algorithm. Additionally, the information required to transmit the motion vectors can be reduced.

  • PDF

Moving image coding with variablesize block based on the segmentation of motion vectors (움직임 벡터의 영역화에 의한 가변 블럭 동영상 부호화)

  • 김진태;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.3
    • /
    • pp.469-480
    • /
    • 1997
  • For moving image coding, the variable size of region coding based on local motion is more efficient than fixed size of region coding. It can be applied well to complex motions and is more stable for wide motions because images are segmented according to local motions. In this paper, new image coding method using the segmentation of motion vectors is proposed. First, motion vector field is smoothed by filtering and segmented by smoothed motion vectors. The region growing method is used for decomposition of regions, and merging of regions is decided by motion vector and prediction errors of the region. Edge of regions is excluded because of the correlation of image, and neighbor motion vectors are used evaluation of current block and construction of region. The results of computer simulation show the proposed method is superior than the existing methods in aspect of coding efficiency.

  • PDF

Fast Disparity Motion Vector Searching Method for the MV-HEVC (MV-HEVC에서 빠른 변위 움직임 벡터 탐색 방법)

  • Lee, Jae-Yung;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.22 no.2
    • /
    • pp.240-252
    • /
    • 2017
  • Multi-view video codec based on the High Efficiency Video Coding (MV-HEVC) has high encoding complexity because it exploits an additional reference picture for disparity compensation prediction (DCP) when the picture of dependent view is encoded. In this paper, we propose an efficient method to reduce the complexity of disparity motion vector search for the MV-HEVC. The proposed method includes the initial search point decision method using affine transform and the adaptive search range decision method. The simulation results show that the proposed method reduces the complexity of disparity motion vector search up to 90.78% with negligible coding efficiency degradation. Also the results show that the proposed method outperforms other conventional techniques reducing complexity.

Neural Network-Based Adaptive Motion Vector Resolution Discrimination Technique (신경망 기반의 적응적 움직임 벡터 해상도 판별 기법)

  • Baek, Han-Gyul;Park, Sang-Hyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.49-51
    • /
    • 2021
  • Versatile Video Coding(VVC)에서 동영상 압축 효율을 증가시키기 위한 다양한 화면 간 예측(inter prediction) 기법 중에 적응적 움직임 벡터 해상도(Adaptive motion vector resolution, 이하 AMVR) 기술이 채택되었다. 다만 AMVR을 위해서는 다양한 움직임 벡터 해상도를 테스트해야 하는 부호화 복잡도를 야기하였다. AMVR의 부호화 복잡도를 줄이기 위하여, 본 논문에서는 가벼운 신경망 모델 기반의 AMVR 조기 판별 기법을 제안한다. 이에 따라 불필요한 상황을 미리 조기에 인지하여 대응한다면 나머지 AMVR 과정을 생략할 수 있기에 부호화 복잡도의 향상을 볼 수 있다.

  • PDF

Motion Search Region Prediction using Neural Network Vector Quantization (신경 회로망 벡터 양자화를 이용한 움직임 탐색 영역의 예측)

  • Ryu, Dae-Hyun;Kim, Jae-Chang
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.161-169
    • /
    • 1996
  • This paper presents a new search region prediction method using vector quantization for the motion estimation. We find motion vectors using the full search BMA from two successive frame images first. Then the motion vectors are used for training a codebook. The trained codebook is the predicted search region. We used the unsupervised neural network for VQ encoding and codebook design. A major advantage of formulating VQ as neural networks is that the large number of adaptive training algorithm that are used for neural networks can be applied to VQ. The proposed method reduces the computation and reduce the bits required to represent the motion vectors because of the smaller search points. The computer simulation results show the increased PSNR as compared with the other block matching algorithms.

  • PDF