• 제목/요약/키워드: Motion Tracking System

Search Result 658, Processing Time 0.032 seconds

Performance Improvement of INS Velocity-aided GPS Carrier Tracking Loop (INS 속도 정보를 사용한 GPS 반송파 추적 루프의 성능 향상)

  • Kim Jeong-Won;Lee Sang-Jeong;Hwang Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.739-745
    • /
    • 2006
  • This paper presents performance improvement of the INS velocity-adided GPS carier tracking loop. To this end, INS velocity-aided GPS carrier tracking loop was modeled as a feedfoward and a feedback loop system. In the phase tracking loop, it was shown that the tracking error caused by the dynamic motion of the vehicle can be compensated with the aiding of the INS information irrespective of the loop order and bandwidth. However, the signal trcking error increases as the INS error increases. It was also shown that in order to remove the tracking error caused by INS bias error, more than or equal to 2nd order PLL should be used. Experiments were carried out and the experimental results were compared with the analysis results.

Development of TPF Generation SIW for KOMPSAT-2 X-Band Antenna Motion Control

  • Kang C. H.;Park D. J.;Seo S. B.;Koo I. H.;Ahn S. I.;Kim E. K.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.485-488
    • /
    • 2005
  • The 2nd KOrea Multi-Purpose Satellite (KOMPSAT -2) has been developed by Korea Aerospace Research Institute (KARI) since 2000. Multi Spectral Camera (MSC) is the payload for KOMPSAT -2, which will provide the observation imagery around Korean peninsula with high resolution. KOMPSAT-2 has adopted X-band Tracking System (XTS) for transmitting earth observation data to ground station. For this, data which describes and controls the pre-defined motion of each on-board X-Band antenna in XTS, must be transmitted to the spacecraft as S-Band command and it is called as Tracking Parameter Files (TPF). In this paper, the result of the development of TPF Generation S/W for KOMPSAT-2 X-Band Antenna Motion Control.

  • PDF

PSD Sensor Module Based Monocular Motion Capture System (PSD센서모듈 기반 단안 모션캡쳐 시스템)

  • Kim, Yu-Geon;Ryu, Young-Kee;Oh, Choon-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.582-584
    • /
    • 2006
  • This paper describes a monocular PSD-based motion capture sensor to employ with commercial video game systems such as Microsoft's XBOX and Sony's Playstation II. The system compact, low-cost, and only requires a one-time calibration at the factory. The system includes a PSD(Position Sensitive Detector) and active infrared (IR) LED markers that are placed on the object to be tracked. The PSD sensor is placed in the focal plane of a wide-angle lens. The micro-controller calculates the 3D position of the markers using only the measured intensity and 2D position on the PSD. A series of experiments were performed to evaluate the performance of our prototype system. From the experimental results we see that the proposed system's compact size, low-cost, ease of installation, and high frame rates are suitable for high speed motion tracking in games.

  • PDF

Dynamic Control of a Robot with a Free Wheel (바퀴달린 로봇의 동적 제어)

  • 은희창;정동원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.127-132
    • /
    • 1998
  • Mobile wheeled robots are nonholonomically constrained systems. Generally, it is very difficult to describe the motion of mechanical systems with nonintegrable nonholonomic constraints. An objective of this study is to describe the motion of a robot with a free wheel. The motion of holonomically and/or nonholonomically constrained system can be simply determined by Generalized Inverse Method presented by Udwadia and Kalaba in 1992. Using the method, we describe the exact motion of the robot and determine the constraint force exerted on the robot for satisfying constraints imposed on it. The application illustrates the ease with which the Generalized Inverse Method can be utilized for the purpose of control of nonlinear system without depending on any linearization, maintaining precision tracking motion and explicit determination of control forces of nonholonomically constrained system.

  • PDF

Target tracking accuracy and performance bound

  • 윤동훈;엄석원;윤동욱;고한석
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.635-638
    • /
    • 1998
  • This paper proposes a simple method to measure system's performance in target tracking problems. Essentially employing the Cramer-Rao lower bound (CRLB) on trakcing accuracy, an algorithm of predicting system's performance under various scenarios is developed. The input data is a collection of measurements over time fromsensors embedded in gaussian noise. The target of interest may not maneuver over the processing time interval while the own ship observing platform may maneuver in an arbitrary fashion. Th eproposed approach is demonstrated and discussed through simulation results.

  • PDF

Numerical Study of Ejected Droplet Formation in Two-Liquid System

  • Song, Mu-Seok;Shunji Homma;Haruhisa Honda
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.4
    • /
    • pp.32-40
    • /
    • 2003
  • Numerical simulation code is developed to study the formation of liquid drops from a nozzle into another quiescent liquid. The Navier-Stokes equations for two immiscible, incompressible, Newtonian fluids are solved on a fixed, staggered grid of cylindrical axisymmetric coordinates. Interfacial motion is captured using a Front-Tracking Method. The time variation of interfacial shape simulated by the code is in excellent agreement with experiments. Simulation results show that the viscosity ratio affects the size of the satellite drops.

Detection of Face Direction by Using Inter-Frame Difference

  • Jang, Bongseog;Bae, Sang-Hyun
    • Journal of Integrative Natural Science
    • /
    • v.9 no.2
    • /
    • pp.155-160
    • /
    • 2016
  • Applying image processing techniques to education, the face of the learner is photographed, and expression and movement are detected from video, and the system which estimates degree of concentration of the learner is developed. For one learner, the measuring system is designed in terms of estimating a degree of concentration from direction of line of learner's sight and condition of the eye. In case of multiple learners, it must need to measure each concentration level of all learners in the classroom. But it is inefficient because one camera per each learner is required. In this paper, position in the face region is estimated from video which photographs the learner in the class by the difference between frames within the motion direction. And the system which detects the face direction by the face part detection by template matching is proposed. From the result of the difference between frames in the first image of the video, frontal face detection by Viola-Jones method is performed. Also the direction of the motion which arose in the face region is estimated with the migration length and the face region is tracked. Then the face parts are detected to tracking. Finally, the direction of the face is estimated from the result of face tracking and face parts detection.

A Study on the Motion Analysis and Lead-Filter Design for High Speed/Accuracy Movement of Gantry Robot (갠트리 로봇의 고속/고정밀 이송을 위한 모션분석 및 앞섬필터 설계)

  • Kim, Jin-Dae;Cho, Che-Seung;Lee, Hyuk-Jin;Shin, Chan-Bai;Park, Chul-Hu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2011
  • Recently gantry-type robot with 3 axes rectangular coordinates have been studied in the many industrial production equipment and machinery fields. To acquire a good handling and motion performance of this robot, reducing the settling-time and securing the accurate-transfer positioning under high-speed conditions should be required. However when robot is moved in high-speed, the large inertia of robot can lead to serious vibration of robot's head. The time-delayed control characteristics of this robot can also lead to tracking error. In this research, the analysis of the effects of higher order positional-profile is carried out to assure high-speed performance and stiffness specifications. To remove the residual vibration caused by kinematic coupling effect of dual-servo gantry, we develop a dual-servo gantry of rotary type that moving frame of x-axis rotates about z-axis. In order to decrease the tracking error, the 3 type lead-filter through system identification was applied respectively. From the experimental results, it was shown that zero-order series leader-filter has the best performance about tracking error and settling time.

Theoretical Approach of Development of Tracking Module for ARPA system on Board Warships

  • Jeong, Tae-Gweon;Pan, Bao-Feng;Njonjo, Anne Wanjiru
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.53-54
    • /
    • 2015
  • The maritime industry is expanding at an alarming rate and as such there is a perpetual need to improve situation awareness in the maritime environment using new and emerging technology. Tracking is one of the numerous ways of enhancing situation awareness by providing information that may be useful to the operator. The tracking system described herein comprises determining existing states of own ship, state prediction and state compensation caused by random noise. The purpose of this paper is to analyze the process of tracking and develop a tracking algorithm by using ${\alpha}-{\beta}-{\gamma}$ tracking filter under a random noise or irregular motion for use in a warship. The algorithm involves initializing the input parameters of position, velocity and course. The actual positions are then computed for each time interval. In addition, a weighted difference of the observed and predicted position at the nth observation is added to the predicted position to obtain the smoothed position. This estimation is subsequently employed to determine the predicted position at (n+1). The smoothed values, predicted values and the observed values are used to compute the twice distance root mean square (2drms) error as a measure of accuracy of the tracking module.

  • PDF

A Study on Motion and Position Recognition Considering VR Environments (VR 환경을 고려한 동작 및 위치 인식에 관한 연구)

  • Oh, Am-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2365-2370
    • /
    • 2017
  • In this paper, we propose a motion and position recognition technique considering an experiential VR environment. Motion recognition attaches a plurality of AHRS devices to a body part and defines a coordinate system based on this. Based on the 9 axis motion information measured from each AHRS device, the user's motion is recognized and the motion angle is corrected by extracting the joint angle between the body segments. The location recognition extracts the walking information from the inertial sensor of the AHRS device, recognizes the relative position, and corrects the cumulative error using the BLE fingerprint. To realize the proposed motion and position recognition technique, AHRS-based position recognition and joint angle extraction test were performed. The average error of the position recognition test was 0.25m and the average error of the joint angle extraction test was $3.2^{\circ}$.