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Abstract

This paper proposes a simple method to measure system’s
performance in target tracking problems. Essentially
employing the Cramer-Raoc Lower Bound (CRLB) on
tracking accuracy, an algorithm of predicting system’s
performance under various scenanios is developed. The
input data is a collection of measurements over time from
sensors embedded in Gaussian noise.  The target of interest
may not maneuver over the processing time interval while
the own ship observing platform may mancuver in an
arbitrary fashion. The proposed approach is demonstrated
and discussed through simulation results.
Keywords Cramer-Rac  Lower Bound (CRLB),
Observability, Target Motion Analysis (TMA).

1.Introduction

The tracking problem of unknown marme platforms
using measurements is generally refemred to as target motion
analysis {TMA). The aim of TMA is to estimate the
parameters such as position, course, and speed of a
(maneuvering) platform, given a time sequence of
measurements. A basic requirement for the TMA is the
system’s observability, ie., the existence of a unique
tracking solution.

Previous works on observability of target tracking have
been widely investigated mainly of ocean environment.
Nardone solved a third-order nonlinear differential equation
explicitly and established the necessary and sufficient
conditions for TMA observability [1]. Tomen provided
analysis statisticallty for statiopary transmitters {2]. Many
explicit investigations were performed [3-5] with
mathematical rigor. But it is difficult to maintain good
physical insight into the problem via these approaches
under various conditions and with a yes-no type answer [6].

When designing a tracking system it is important to be
able to predict the system performance under a number of
conditions. A technique is needed which quickly answers
such questions without requiring the design and testing of
an actual ftracking system. A method for system

performance measwre employing the Cramer-Rao Lower
Bound (CRLB) on tracking accuracy is proposed. Iis ease
of implementation is demonstrated while requiring fewer
system resources.

We will first describe the concept through the
“Performance Bound” in Section 2 and formulate the
problem to be worked on.  And then we present relevant
examples by reflecting the performance measurement
procedure in Section 3. A concluding remark is given in
the Section 4.

2, Performance bound

2.1 Problem formulation

The conventional system for tracking a target can be
considered to be a mathematical function that maps an input
vector to an output vector, The mput vector is a set of
error {ree measurements to which the measurernent noise
and bias are added. The measurement occurs at arbitrary
times and may be of different types (beanng, time delays,
frequencies, etc.). In this investigation we assune there
are m measurernents, the measwrement noise is zero mean
Gaussign of known variance, and the measurement noise is
independent for different measurements.

The output is usually a four-element state vector, which
describes the position and motion of the target This
assumes straight line non-maneuvering tracks. The size of
the state vector can be increased by adding accelerations or
other unknown quantities. We assume the four state vector

as [x, ¥, %, 7]

In addition to a m*/ measurement vector for an input and
a 4*! state vector for an output, two covariance matrices are
included. Measurement error statistics are contained in a
m*m matrix. For independent measurement errors this
tmatrix is diagonal with the i-th diagonal element being the
varance of the i-th measuerment. The oulput covariance
matrix contains the statistics for the output state vector. It is
seldom diagonal, and the off diagonal terms are influenced
by comrelation between the estimated state elements,

The problem is depicted in Fig. 1. r is a measurement
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vector with covariance matnx, R, which contains
measurement variance. X is a state vector with covariance
matrix P which contains the necessary information to
describe the accuracy of the tracker Variance of the
estimated state elements are represented by diagonal terms,
and eliipses of position uncertainty can be plotted.
Therefore, a method to compute P is sufficient for allowing
a study of tracker performance.

MEASUREMENTS ESTIMATE
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Figure 1. Tracker model

2.2 Cramer-Rao Lower Bound

The theoretical bounds on tracking performance can be
computed from the Cramer-Rao lower bounds (CRLB) [7].
The CRLB is defined as the inverse of the Fisher
information matrix ./, where the elements of J are computed
as

ol rix)2ln rlx
J{.’ :E nprjx( * ) prix( , ) (])
ax, o

! 4

0'Inp,.(r|x)

Tl e, @

where the vector x is the targel state and p_ (r | x) 1

the probability density function (pdf) of the obseravtion
given state, also known as the fikelihood function. If

P, (r | x)y is taken lo be Gaussian, then the natural

logarithm of the pdf is proportional to the mean square etror
(MSE), and the computation effort is simplified
considerably. Usually the measurements are nonlinear
with respect to the target state and the linearization of the
measurements with respect 1o the target state x is required.
In concept, if all measurcments are error [ree and the
motion model for the target track is correct, the tracker will
produce an error free state estimate. However, it would be
necessary to have a sufficient number of measurements; i.e.
m:>4. Even in this case there exists a rclationship between
each of the relationship between ecach of the m
measurements and the 4-state elements. Were there some
erTor in any measurement it would cause some perturbation
in the elements of the state vector, although not necessarily
all of them. To determine the tracking accuracy we need
to calculate the influence of each measurement error on

errors in the estimated state and then combine the effects of
all of the measurements.

The relationship between changes in measuremets caused
by changes in the state is contasined in a mx4 matrix of
partial derivatives [2,3]:

o, dn ar,
&, o, ox,
or, or,
M=E| & o, ©)
ar, or,
e o)

In the non-linear system, these derivatives must be
evaluated with knowledge of the siate. In an actual tracker
the estimated state is used for this purpose and will contain
some error, which causes somewhat incorrect derivatives.
In our analysis we use the true state value and introduce no
error from incotrect derivative values.

At this point we avoid a derivation of wacking equations
but will use one relationship that is a byproduct. This
important formula relates deviations in the estimated state
to deviations in the measurements.

Sx =[M"R'M|'M "R "6r Q)]

where Sx 1s a 4*/ vector of changes in stateand §r isa
m*! vector of changes in measurements. Now P, the

covariance matrix for the estimated state, is £ {§x5x 7}

where F is an expected value.

P

E{M R'M|"'MTRar
SFTR'M[MTRMY'Y (5

[MTRM "M TR'M M R M

= [M erlM]—l

where E{SydyT} = R by definition.

This simple relationship calculates the tracking accuracy
as a function of measurement errors and the geometric
relationships that control the derivatives that make up the M
matnix.

2.3 Issues and implementation

To calculate P, the 4x4 matrix M "R 'A must be
inverted. If it is singular (rank less than 4) P cannot be
calculated, and the state is referred to as “uncbservable.”
Theory may indicate that the state is observable, yet on a
computer the Af "R 'M  matrix may not inverl.
Numerical problems can be treated in a number of ways.
Common solutions are double precision calculations,
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forcing A TR "M 1o be symmetric by averaging the #
with ;i elements, rotating the state so that measurements
relate directly to state elements, and scaling the state so that
all diagonal elements of M "R "'Af are of comparable
value. There is very useful information in the eigenvalues of
M TR ™'M . A zero or near zero eigenvalue indicates a
non-observable state. The eigenvectors give a geometric
picture of the tracking solution.

Sequential implementation is possible by inspecting the
property of noise. Inthe Pmatrix, M "R 'AM , Risa
diagonal matrix if the measurement noise is independent
from measurement to measurement. Then

M,
il 1 M 6
P= Z;;z— M'j [Mu M, M, A'[u] ©

i=t

MM

We have taken advantage of the diagonal structure of R to
separate the contributions from different measurements.

Let a 4x4 matrix, Z, be the matrix without inverse in Eqn.
(6) which can be thought of as the Fisher Information
matrix. Imtialize all elements of 7 to be zero before
measurement indicating no information available. For the
first measurement we can calculate Z, /-1 mn Eqn. {6), and
add it to previous value. We then do the procedure
recursively.  Any time we desire to know P, we can invert
the Z matrix. Note that the rumming sum contaimned in Z
requircs no matnx imversion; only the caleulation of P
TEqUITES an inversion.

3. Examples

The tracker observability plot of bearing only tracking
system in Fig. 2 was presented as an cxample. The two-
dimensional location problem can be formulated as follows.

Let x =[x, v, %, 7] be the state vector in Cartesian

coordinates. The discrete-time equation for the target state
assurming constant velocity is given by

x(k+1)= Ok +1,k)x N
where
1 0 r 0
@ - 01 0 ¢ (8)
0 0 I 0
00 0 1

The bearing to the target is defined by the relationship.

tan A(k) = = %)
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Figure 2. Problem geometry

where r is the range between own ship (OS) and target ship
(TS).

Figs. 3 and 5 show the OS and TS motion scenarios. The
first scenano is one-leg case. ‘Total simulation time 1s 20
minutes. Target speed is 9 knots, target course is 90 degrees.
Surveying area i1s 40000 (yards} x 40000 (vards) and each
cellsize is 300 (vards) x 300 (yards) Measuwrement
bearing uncertainty is 2.6 degrees. The output is semi-
major axis in yards. All of the area is unobservable with
large value in observability plot. It is a well match to the
previous analysis on TMA (Fig. 4),

ayn’
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Figure 3. Scenario 1: one-leg (TS: 90 degrees)

.

Figure 4. Observability of one-leg case
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The second scenario is two-leg case. TS moving 315
degrees. The maneuver of OS is necessary in bearing only
system. Fig. 5 shows the OS and TS motion with
observability plot. It is easily discernable as the highly
observable region and poorly observable region. The
uncertainty in the highly observable region is about 100
yards to 500 vards (Fig. 6).

-18 =1 -1 o (1] [ BRI E

. .r : . kgt
Figure 5. Scenario 2: two-teg (TS: 315 degrees) and
observability plot

The techmques outhned in these paper yield a CRLB on
tracking accuracy. Achieving this accuracy in a real systme
depends on how many of the underlying assumptions have
been viclated. The assumptions are as follows. No
measurement bias 1s presenl. Measuremeni crrors are
independent. Partial derivatives were evaluated at true value
of state, not estimated values.

Figure 6. Obsavabiﬁty of two-leg

4. Conclusions

Tracker observability amalysis is presented.  The
tracking accuracy bound can be obtained via this approach
and can be used 1o determine the tracker’s performance
measures.

Knowledge of the CRLB is very useful. It shows what
makes the target track observable, how many measurements
are needed, what accuracy is required, and what geometry is
favorable for solutions, etc.  Although it is hard to achieve
CRLB in a real tracking system, the values show whether
the attempt is justified.

The proposed tracking analysis tool is very easy 1o
implement and use. It is far simpler than a Monte Carlo
analysis in which a complete tracker must be designed
along with a messwrement simulator and then exercised
hundreds of times. In designing an efficient tracking
system, the proposed method should be used first and then
followed by a complete design with Monte Carlo analysis.
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