• Title/Summary/Keyword: Motion Ratio

Search Result 1,377, Processing Time 0.03 seconds

Development of the Linear Feeder for Uniform Transportation of Grains (균일한 곡물이송을 위한 색채 선별기용 리니어 피더의 개발)

  • Lee, Kyu-Ho;Kim, Sung-Hyun;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.567-570
    • /
    • 2006
  • The purpose of this study is to develope a linear feeder for uniform transportation of grains and to present its design guide line. so, It is measured the displacement of the front and rear aspect of the feeder in time domain. And the measured time signal is represented to the plane coordinate. From this process, it is presented the motion of the feeder in a harmonic excited condition. Also, It is determined whether translation motion or rotation motion. From these course, it is defined the optimized dynamic motion for uniform transportation of grains. It is included a ratio of the displacement and the angle which the dynamic motion between the front and rear aspect of the feeder.

  • PDF

The influence of vertical ground motion on the seismic behavior of RC frame with construction joints

  • Yu, Jing;Liu, Xiaojun
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.407-420
    • /
    • 2016
  • The aim of this study is to investigate the effect of vertical ground motion (VGM) on seismic behavior of reinforced concrete (RC) regular frame with construction joints, and determine more proper modeling method for cast-in-situ RC frame. The four-story RC frames in the regions of 7, 8 and 9 earthquake intensity were analyzed with nonlinear dynamic time-history method. Two different methods of ground motion input, horizontal ground motion (HGM) input only, VGM and HGM input simultaneously were performed. Seismic responses in terms of the maximum vertex displacement, the maximum inter-story drift distribution and the plastic hinge distribution were analyzed. The results show that VGM might increase or decrease the horizontal maximum vertex displacement depending on the value of axial load ratio of column. And it will increase the maximum inter-story drift and change its distribution. Finally, proper modeling method is proposed according to the distribution of plastic hinges, which is in well agreement with the actual earthquake damage.

Nonlinear Effects on a Ship Motion and Wave Load (비선형성(非線型性)을 고려(考慮)한 규칙파중(規則波中) 선체응답(船體應答)에 관(關)한 연구(硏究))

  • J.H.,Hwang;Y.J.,Kim;J.Y.,Kim;I.G.,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.3
    • /
    • pp.1-8
    • /
    • 1985
  • In this paper, the motion response and wave load of a container ship are treated by a nonlinear motion theory, which is similar to that used by Yamamoto et. al.[1]. This paper deals with the vertical motion response in oblique waves and the effect of the Smith correction in buoyancy force calculation. In the present computation, for S-175 container ship model our result also shows that the ratio of the motion peak to peak value to the wave height decreases as the wave height increases, which was obtained earlier by Yamamoto et.al.[3]. On the other hand the nondimensional midship bending moment increases as the wave height increases. These nonlinear effects are dominant near the resonance frequency, and depend on the hull form and forward speed. However, it is found that these nonlinear effects are significant for tanker model.

  • PDF

Redundant Robot Control by Neural Optimization Networks (신경망 최적화 회로에 의한 여유자유도를 갖는 로보트의 제어)

  • 현웅근;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.638-648
    • /
    • 1990
  • An effective resolved motion control method of redundant manipulators is proposed to minimize the energy consumption and to increase the dexterity while satisfying the physical actuator constraints. The method employs the neural optimization networks, where the computation of Jacobian matrix is not required. Specifically, end effector movement resulting from each joint differential motion is first separated into orthogonal and tangential components with respect to a given desired trajectory. Then the resolved motion is obtained by neural optimization networks in such a way that 1) linear combination of the orthogonal components should be null 2) linear combination of the tangential components should be the differential length of the desired trajectory, 3) differential joint motion limit is not violated, and 4) weighted sum of the square of each differential joint motion is minimized. Here the weighting factors are controlled by a newly defined joint dexterity measure as the ratio of the tangential and orthogonal components.

  • PDF

DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW SIMULATION WITH RELATIVE MOTION (상대운동이 있는 이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발)

  • Jung Mun-Seung;Kwon Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.1-7
    • /
    • 2006
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect ratio quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoils involving relative motion. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

An Adaptive Fast Motion Estimation Based on Directional Correlation and Predictive Values in H.264 (움직임 방향 연관 및 예측치 적용 기반 적응적 고속 H.264 움직임 추정 알고리즘의 설계)

  • Kim, Cheong-Ghil
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2011
  • This research presents an adaptive fast motion estimation (ME) computation on the stage of uneven multi-hexagon grid search (UMHGS) algorithm included in an unsymmetrical-cross multi-hexagon-grid search (UMHexagonS) in H.264 standard. The proposed adaptive method is based on statistical analysis and previously obtained motion vectors to reduce the computational complexity of ME. For this purpose, the algorithm is decomposed into three processes: skipping, terminating, and reducing search areas. Skipping and terminating are determined by the statistical analysis of the collected minimum SAD (sum of absolute difference) and the search area is constrained by the slope of previously obtained motion vectors. Simulation results show that 13%-23% of ME time can be reduced compared with UMHexagonS, while still maintaining a reasonable PSNR (peak signal-to-noise ratio) and average bitrates.

  • PDF

Numerical study of Double Hydrofoil motions for thrust and propulsive efficiency (추력 및 효율 향상을 위한 Double Hydrofoil 움직임에 대한 수치해석 연구)

  • Kim, Sue-Jin;Han, Jun-Hee;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.59-70
    • /
    • 2014
  • The motion of birds and insects have been studied and applied to MAV(Micro Air Vehicle) and AUV(Autonomous Underwater Vehicle). Most of AUV research is focused on shape and motion of single hydrofoil. However, double hydrofoil system is mostly used in real physics. This system shows completely different hydrodynamic characteristic to single hydrofoil because of wake interaction. The goal of this study is define the trajectory of wake interaction in double hydrofoil system. Moreover, trust and efficiency of various combined motion will be demonstrated. Symmetry airfoil is used for analysis an hydrodynamic characteristic. Forward wing's plunging and pitching motion is fixed, hide wing's Heaving ratio, Pitch phase shift from forward plunging and Heaving shift is changed. This study provide necessary basic data of motion optimization for double hydrofoil system.

Hybrid Deinterlacing Algorithm with Motion Vector Smoothing

  • Khvan, Dmitriy;Jeon, Gwanggil;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.262-265
    • /
    • 2012
  • In this paper we propose a new deinterlacing method with block classification and motion vector smoothing. The proposed method classifies a block, then depending on the region it belongs to, the motion estimation or line averaging is applied. To classify a block its variance is calculated. Then, for those blocks that belong to simple non-texture region the line averaging is done while motion estimation is applied to complex region. The motion vector field is smoothed using median filter what yields more accurate interpolation. In the experiments for the subjective evaluation, the proposed method bas shown satisfying results in terms of computation time consumption and peak signal-to-noise ratio. Due to the simplicity of the algorithm computation time was drastically decreased.

  • PDF

A Stabilization Method for Rotated and Translated Images (회전 및 병진 흔들림 영상의 안정화 기법)

  • Seok Ho-Dong;Lyou Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.810-817
    • /
    • 2006
  • This paper presents a rotational motion estimation and correction technique for digital image stabilization. An equivalent rotation model is derived so as to accommodate a combined rotational and the translational motion. Thanks to this simplification, the suggested estimation algorithm can directly find the rotational center using geometric characteristic of local motion vectors instead of using searching method. And we also present recursive version of frame to reference algorithm(FRA) for the real time implementation. The proposed DIS system does not require time consuming parameter searching process, while showing comparatively good performance compared with the previous ones. To show the effectiveness of the DIS scheme, the algorithm has been implemented on the DSP based hardware system and experimental results are also discussed.

A Fast Hierarchical Motion Vector Estimation Using Mean Pyramids (평균 피라미드를 이용한 계층적 고속 이동벡터 추정)

  • 남권문;김준식;박래홍;심영석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.35-48
    • /
    • 1993
  • In this paper, a hierarchical motion vector estimation algorithm using pyramidal structure is proposed. Using a smaller measurement window at each level of a pyramid than that of the conventional scheme, the proposed algorithm, based on the TSS(three step search), reduces the computational complexity greatly with its performance comparable to that of the TSS. By increasing the number of cnadidate motion vectors which are to be used as the initial search points for motion vector estimation at the next level, the performance improves further. Then the computational complexity of the proposed hierarchical algorithm depends on the number of candidate motion vectors, with its PSNR (peak signal to noise ratio) ranging between those of the TSS and the full search method. The simulation results with two different block sizes and various test sequences are given and its hardware implementation is also sketched.

  • PDF