• Title/Summary/Keyword: Motion Processing

Search Result 1,365, Processing Time 0.034 seconds

Key Technologies in Robot Assistants: Motion Coordination Between a Human and a Mobile Robot

  • Prassler, Erwin;Bank, Dirk;Kluge, Boris
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.56-61
    • /
    • 2002
  • In this paper we describe an approach to coordinating the motion of a human with a mobile robot moving in a populated, continuously changing. natural environment. Our test application is a wheelchair accompanying a person through the concourse of a railway station moving side by side with the person. Our approach is based on a method for motion planning amongst moving obstacles known as Velocity Obstacle approach. We extend this method by a method for tracking a virtual target which allows us to vary the robot's heading and velocity with the locomotion of the accompanied person and the state of the surrounding environment.

Video Processing of MPEG Compressed Data For 3D Stereoscopic Conversion (3차원 입체 변환을 위한 MPGE 압축 데이터에서의 영상 처리 기법)

  • 김만배
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.3-8
    • /
    • 1998
  • The conversion of monoscopic video to 3D stereoscopic video has been studied by some pioneering researchers. In spite of the commercial of potential of the technology, two problems have bothered the progress of this research area: vertical motion parallax and high computational complexity. The former causes the low 3D perception, while the hardware complexity is required by the latter. The previous research has dealt with NTSC video, thur requiring complex processing steps, one of which is motion estimation. This paper proposes 3D stereoscopic conversion method of MPGE encoded data. Our proposed method has the advantage that motion estimation can be avoided by processing MPEG compressed data for the extraction of motion data as well as that camera and object motion in random in random directions can be handled.

  • PDF

An Efficient Video Indexing Method using Object Motion Map in compresed Domain (압축영역에서 객체 움직임 맵에 의한 효율적인 비디오 인덱싱 방법에 관한 연구)

  • Kim, So-Yeon;No, Yong-Man
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.5
    • /
    • pp.1570-1578
    • /
    • 2000
  • Object motion is an important feature of content in video sequences. By now, various methods to exact feature about the object motion have been reported[1,2]. However they are not suitable to index video using the motion, since a lot of bits and complex indexing parameters are needed for the indexing [3,4] In this paper, we propose object motion map which could provide efficient indexing method for object motion. The proposed object motion map has both global and local motion information during an object is moving. Furthermore, it requires small bit of memory for the indexing. to evaluate performance of proposed indexing technique, experiments are performed with video database consisting of MPEG-1 video sequence in MPEG-7 test set.

  • PDF

Adaptive Motion Vector Smoothing for Improving Side Information in Distributed Video Coding

  • Guo, Jun;Kim, Joo-Hee
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.103-110
    • /
    • 2011
  • In this paper, an adaptive motion vector smoothing scheme based on weighted vector median filtering is proposed in order to eliminate the motion outliers more effectively for improving the quality of side information in frame-based distributed video coding. We use a simple motion vector outlier reliability measure for each block in a motion compensated interpolated frame and apply weighted vector median filtering only to the blocks with unreliable motion vectors. Simulation results show that the proposed adaptive motion vector smoothing algorithm improves the quality of the side information significantly while maintaining low complexity at the encoder in frame-based distributed video coding.

Real-Time Motion Blur Using Triangular Motion Paths

  • Hong, MinhPhuoc;Oh, Kyoungsu
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.818-833
    • /
    • 2017
  • This paper introduces a new algorithm that renders motion blur using triangular motion paths. A triangle occupies a set of pixels when moving from a position in the start of a frame to another position in the end of a frame. This is a motion path of a moving triangle. For a given pixel, we use a motion path of each moving triangle to find a range of time that this moving triangle is visible to the camera. Then, we sort visible time ranges in the depth-time dimensions and use bitwise operations to solve the occlusion problem. Thereafter, we compute an average color of each moving triangle based on its visible time range. Finally, we accumulate an average color of each moving triangle in the front-to-back order to produce the final pixel color. Thus, our algorithm performs shading after the visibility test and renders motion blur in real time.

Remote Control of Small Moving Object using Leap Motion Sensor (Leap Motion 센서를 사용한 소형 이동체의 원격제어)

  • Lee, So Yun;Han, Man Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.231-232
    • /
    • 2014
  • We develop a remote control system of a walking robot using a Leap motion sensor. Hand gestures and the position of fingers are provided from the Leap motion sensor. We use Processing and the LeapMotionP5 library for the development software.

  • PDF

Implementation of Embedded System Based Simulator Controller Using Camera Motion Parameter Extractor (카메라 모션 벡터 추출기를 이용한 임베디드 기반 가상현실 시뮬레이터 제어기의 설계)

  • Lee Hee-Man;Park Sang-Jo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.4
    • /
    • pp.98-108
    • /
    • 2006
  • In the past, the Image processing system is independently implemented and has a limit in its application to a degree of simple display. The scope of present image processing system is diversely extended in its application owing to the development of image processing IC chips. In this paper, we implement the image processing system operated independently without PC by converting analogue image signals into digital signals. In the proposed image processing system, we extract the motion parameters from analogue image signals and generate the virtual movement to Simulator and operate Simulator by extracting motion parameters.

  • PDF

A Non-invasive Real-time Respiratory Organ Motion Tracking System for Image Guided Radio-Therapy (IGRT를 위한 비침습적인 호흡에 의한 장기 움직임 실시간 추적시스템)

  • Kim, Yoon-Jong;Yoon, Uei-Joong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.676-683
    • /
    • 2007
  • A non-invasive respiratory gated radiotherapy system like those based on external anatomic motion gives better comfortableness to patients than invasive system on treatment. However, higher correlation between the external and internal anatomic motion is required to increase the effectiveness of non-invasive respiratory gated radiotherapy. Both of invasive and non-invasive methods need to track the internal anatomy with the higher precision and rapid response. Especially, the non-invasive method has more difficulty to track the target position successively because of using only image processing. So we developed the system to track the motion for a non-invasive respiratory gated system to accurately find the dynamic position of internal structures such as the diaphragm and tumor. The respiratory organ motion tracking apparatus consists of an image capture board, a fluoroscopy system and a processing computer. After the image board grabs the motion of internal anatomy through the fluoroscopy system, the computer acquires the organ motion tracking data by image processing without any additional physical markers. The patients breathe freely without any forced breath control and coaching, when this experiment was performed. The developed pattern-recognition software could extract the target motion signal in real-time from the acquired fluoroscopic images. The range of mean deviations between the real and acquired target positions was measured for some sample structures in an anatomical model phantom. The mean and max deviation between the real and acquired positions were less than 1mm and 2mm respectively with the standardized movement using a moving stage and an anatomical model phantom. Under the real human body, the mean and maximum distance of the peak to trough was measured 23.5mm and 55.1mm respectively for 13 patients' diaphragm motion. The acquired respiration profile showed that human expiration period was longer than the inspiration period. The above results could be applied to respiratory-gated radiotherapy.

Implementation of Simulator Control System using Embedded System and Motion Parameter Extraction (임베디드 시스템을 이용한 모션 벡터 추출 및 시뮬레이터 제어기의 설계)

  • 최용호;이희만;박상조
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.181-184
    • /
    • 2003
  • In the past, the image processing system is independently implemented and has a limit in its application to a degree of simple display. The scope of present image processing system is diversely extended in its application owing to the development of image processing It chips. In this paper, we implement the image processing system operated independently without PC by converting analogue image signals into digital signals. In the proposed image processing system, we extract the motion parameters from analogue image signals and generate the virtual movement to Simulator. Also we analysis the image control algorithm and operate Simulator by extracting motion parameters.

  • PDF

Cancellation of MRI Motion Artifact in Image Plane

  • Kim Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • In this study, a new algorithm for canceling a MRI artifact due to the translational motion In the image plane is described. Unlike the conventional iterative phase retrieval algorithm, in which there is no guarantee for the convergence, a direct method for estimating the motion is presented. In previous approaches, the motions in the x(read out) direction and the y(phase encoding) direction were estimated simultaneously. However, the feature of x and y directional motions are different from each other. By analyzing their features, each x and y directional motion is canceled by the different algorithms in two steps. First, it is noticed that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal, and the non-zero area of the spectrum just corresponds to the projected area of the density function on the x axis. So the motion is estimated by tracing the edges between non-zero area and zero area of the spectrum, and the x directional motion is canceled by shifting the spectrum in an reverse direction. Next, the y directional motion is canceled by using a new constraint condition, with which the motion component and the true image component can be separated. This algorithm is shown to be effective by using a phantom image with simulated motion.

  • PDF