• Title/Summary/Keyword: Motion Matching

Search Result 607, Processing Time 0.046 seconds

A Fast Block-Matching Motion Estimation Algorithm with Motion Modeling and Motion Analysis (움직임 모델링과 해석을 통한 고속 블록정합 움직임 예측 방법)

  • 임동근;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.73-78
    • /
    • 2004
  • By modeling the block matching algorithm as a function of the correlation of image blocks, we derive search patterns for fast block matching motion estimation. The proposed approach provides an analytical support lot the diamond-shape search pattern, which is widely used in fast block matching algorithms. We also propose a new fast motion estimation algorithm using adaptive search patterns and statistical properties of the object displacement. In order to select an appropriate search pattern, we exploit the relationship between the motion vector and the block differences. By changing the search pattern adaptively, we improve motion prediction accuracy while reducing required computational complexity compared to other fast block matching algorithms.

An Adaptive Motion Estimation Algorithm Using Spatial Correlation (공간 상관성을 이용한 적응적 움직임 추정 알고리즘)

  • 박상곤;정동석
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.43-46
    • /
    • 2000
  • In this paper, we propose a fast adaptive diamond search algorithm(FADS) for block matching motion estimation. Fast motion estimation algorithms reduce the computational complexity by using the UESA (Unimodal Error Search Assumption) that the matching error monotonically increases as the search moves away from the global minimum error. Recently many fast BMAs(Block Matching Algorithms) make use of the fact that the global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the adjacent blocks. We change the origin of search window according to the spatially adjacent motion vectors and their MAE(Mean Absolute Error). The computer simulation shows that the proposed algorithm has almost the same computational complexity with UCBDS(Unrestricted Center-Biased Diamond Search)〔1〕, but enhance PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS(Full Search), even for the large motion case, with half the computational load.

  • PDF

Motion Tracking Algorithm for A CCTV System (CCTV 시스템을 위한 움직임 추적 기법)

  • Kang, Seoung-Il;Hong, Sung-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.295-296
    • /
    • 2006
  • This paper implements a method that tracking the moving objects that detected by the motion detection function of the digital CCTV system. We simply implement the motion detection function of the digital CCTV system that use frame difference and thresholding. When motion is detected, the motion detection function generates two outputs. One output is the event that the motion is arised in input image frame. The other output is coordinate that motion is exists. Then, do the block matching algorithm[2] using coordinate, that motion is exists, as initial coordinate of the block matching algorithm. The best matched coordinate is new initial coordinate of the block matching algorithm for the next image frame. We simply use the block matching algorithm that implements tracking the moving objects. It is simple, but useful the actual digital CCTV system.

  • PDF

Contour Shape Matching based Motion Vector Estimation for Subfield Gray-scale Display Devices (서브필드계조방식 디스플레이 장치를 위한 컨투어 쉐이프 매칭 기반의 모션벡터 추정)

  • Choi, Im-Su;Kim, Jae-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.327-328
    • /
    • 2007
  • A contour shape matching based pixel motion estimation is proposed. The pixel motion information is very useful to compensate the motion artifact generated at the specific gray level contours in the moving image for subfield gray-scale display devices. In this motion estimation method, the gray level boundary contours are extracted from the input image. Then using contour shape matching, the most similar contour in next frame is found, and the contour is divided into segment unit. The pixel motion vector is estimated from the displacement of the each segment in the contour by segment matching. From this method, more precise motion vector can be estimated and this method is more robust to image motion with rotation or from illumination variations.

  • PDF

Enhanced Binary Block Matching Method for Constrained One-bit Transform based Motion Estimation (개선된 이진 블록 매칭 방법을 사용한 제한된 1비트 변환 알고리듬 기반 움직임 추정)

  • Kim, Hyungdo;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.257-264
    • /
    • 2015
  • In this paper, Enhanced binary block matching method for Constrained one-bit transform (C1BT) based motion estimation is proposed. Binary motion estimation exploits the Number of non-matched points (NNMP) as a block matching criterion instead of the Sum of Absolute Differences (SAD) for low complex motion estimation. The motion estimation using SAD could use the smaller block for more accurate motion estimation. In this paper the enhanced binary block matching method using smaller motion estimation block for C1BT is proposed to the more accurate binary matching. Experimental results shows that the proposed algorithm has better Peak Signal to Noise Ration (PSNR) results compared with conventional binary transform algorithms.

Motion Direction Oriented Fast Block Matching Algorithm (움직임 방향 지향적인 고속 블록정합 알고리즘)

  • Oh, Jeong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.2007-2012
    • /
    • 2011
  • To reduce huge computation in the block matching, this paper proposes a fast block matching algorithm which limits search points in the search area. On the basis of two facts that most motion vectors are located in central part of search area and matching error is monotonic decreasing toward the best similar block, the proposed algorithm moves a matching pattern between steps by the one pixel, predicts the motion direction for the best similar block from similar blocks decided in previous steps, and limits movements of search points to ${\pm}45^{\circ}C$ on it. As a result, it could remove the needless search points and reduce the block matching computation. In comparison with the conventional similar algorithms, the proposed algorithm caused the trivial image degradation in images with fast motion but kept the equivalent image quality in images with normal motion, and it, meanwhile, reduced from about 20% to over 67% of the their block matching computation.

Research on Effective Feature Vector Configuration for Motion Matching in Locomotive Motion Generation (보행 동작 생성을 위한 모션 매칭의 효과적인 특징 벡터 설정에 관한 연구)

  • Sura Kim;Sang Il Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.159-166
    • /
    • 2023
  • This paper investigates effective methods for implementing motion matching, which is actively used in real-time motion generation applications. The success of motion matching heavily hinges on its simple definition of a feature vector, yet this very definition can introduce significant variance in the outcomes. Our research focuses on identifying the optimal combination of feature vectors that effectively generates desired trajectories in locomotion generation. To this end, we experimented with a range of feature vector combinations and performed an in-depth error analysis to evaluate the results.

Optimal Search Patterns for Fast Block Matching Motion Estimation (고속 블록정합 움직임 추정을 위한 최적의 탐색 패턴)

  • 임동근;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.39-42
    • /
    • 2000
  • Motion estimation plays an important role for video coding. In this paper, we derive optimal search patterns for fast block matching motion estimation. By analyzing the block matching algorithm as a function of block shape and size, we can find an optimal search pattern for initial motion estimation. The proposed idea, which has been verified experimentally by computer simulations, can provide an analytical basis for the current MPEG-2 proposals. In order to choose a more compact search pattern for BMA, we exploit the statistical relationship between the motion and the frame difference of each block.

  • PDF

Fast Hierarchical Block Matching Algorithm by Adaptively Using Spatial Correlation of Motion Field (운동영역의 상관성을 선택적으로 이용한 고속 움직임 추정 기법)

  • 임경원;송병철;나종범
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.217-220
    • /
    • 1996
  • This paper describes a new hierarchial block matching algorithm especially appropriate for a large search area. The proposed algorithm consists of higher level search for an initial motion vector estimate by using a new matching criterion over the evenly subsampled search points, and lower level search for the final motion vector refinement. In the higher level matching criterion, mean absolute differences at the search points (or motion vector candidates) similar to motion vectors of causally neighboring blocks, are weighted properly so that these points can have a higher chance to being selected. The proposed algorithm outperforms existing hierarchical block matching algorithms, and its computational regularity makes hardware implementation simple.

  • PDF

Motion analysis within non-rigid body objects in satellite images using least squares matching

  • Hasanlou M.;Saradjian M.R.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.47-51
    • /
    • 2005
  • Using satellite images, an optimal solution to water motion has been presented in this study. Since temperature patterns are suitable tracers in water motion, Sea Surface Temperature (SST) images of Caspian Sea taken by MODIS sensor on board Terra satellite have been used in this study. Two daily SST images with 24 hours time interval are used as input data. Computation of templates correspondence between pairs of images is crucial within motion algorithms using non-rigid body objects. Image matching methods have been applied to estimate water body motion within the two SST images. The least squares matching technique, as a flexible technique for most data matching problems, offers an optimal spatial solution for the motion estimation. The algorithm allows for simultaneous local radiometric correction and local geometrical image orientation estimation. Actually, the correspondence between the two image templates is modeled both geometrically and radiometrically. Geometric component of the model includes six geometric transformation parameters and radiometric component of the model includes two radiometric transformation parameters. Using the algorithm, the parameters are automatically corrected, optimized and assessed iteratively by the least squares algorithm. The method used in this study, has presented more efficient and robust solution compared to the traditional motion estimation schemes.

  • PDF