In this paper, we present a CNN-based gesture recognition approach which reduces the memory burden of input data. Most of the neural network-based gesture recognition methods have used a sequence of frame images as input data, which cause a memory burden problem. We use a motion history image in order to define a meaningful gesture. The motion history image is a grayscale image into which the temporal motion information is collapsed by synthesizing silhouette images of a user during the period of one meaningful gesture. In this paper, we first summarize the previous traditional approaches and neural network-based approaches for gesture recognition. Then we explain the data preprocessing procedure for making the motion history image and the neural network architecture with three convolution layers for recognizing the meaningful gestures. In the experiments, we trained five types of gestures, namely those for charging power, shooting left, shooting right, kicking left, and kicking right. The accuracy of gesture recognition was measured by adjusting the number of filters in each layer in the proposed network. We use a grayscale image with 240 × 320 resolution which defines one meaningful gesture and achieved a gesture recognition accuracy of 98.24%.
2D영상의 3D변환 기술은 3D 디스플레이 및 3DTV에 기본적으로 장착된 기술로 꾸준히 연구 및 상업화가 진행된 기술이다. 3D변환은 정지영상으로부터 다양한 깊이단서를 이용하여 깊이맵을 추출한 후에, DIBR(Depth Image Based Rendering)로 입체영상을 생성한다. 또한 비디오에서 추출할 수 있는 모션정보를 활용하여 모션 깊이맵을 얻기도 한다. 본 논문에서는 기존의 블록기반 모션예측, 광유 등의 모션 추출 방식이 아닌 운동 히스토리 영상(Motion History Image)를 활용하여 모션 깊이맵을 얻는 새로운 방법을 제안하고 실제 활용 가능성을 조사한다. 실험에서는 제안한 방법을 다양한 운동 유형을 가지는 8개의 2D 비디오 콘텐츠에 적용하였고, 생성된 모션 깊이맵의 정성적 평가 및 수행 속도의 비교를 통하여 MHI 기반 깊이맵의 실제 적용이 적합함을 증명하였다.
International journal of advanced smart convergence
/
제1권2호
/
pp.39-42
/
2012
This paper proposed a method that detects emergency situations in a video stream using MHI (Motion History Image) and template matching for a video-based intelligent security system. The proposed method creates a MHI of each human object through image processing technique such as background removing based on GMM (Gaussian Mixture Model), labeling and accumulating the foreground images, then the obtained MHI is compared with the existing MHI templates for detecting an emergency situation. To evaluate the proposed emergency detection method, a set of experiments on the dataset of video clips captured from a security camera has been conducted. And we successfully detected emergency situations using the proposed method. In addition, the implemented system also provides MMS (Multimedia Message Service) so that a security manager can deal with the emergency situation appropriately.
실시간 영상을 이용하여 움직임 검출을 하는데 사용하는 배경 차영상 기법에 의한 움직임 및 변화 영역 검출 방법과 움직임 히스토리에 의한 움직임 검출법, 광류에 의한 움직임 검출법, 움직임 추적을 위한 추적하려는 물체의 히스토그램의 역투영을 이용하면서 물체의 중심점을 추적하는 MeanShift와 물체의 중심, 크기, 방향을 함께 추적하는 CamShift, Kalman 필터에 의한 움직임 추적 알고리즘 등이 있다. 본 논문에서는 물체의 색상과 모양 정보를 이용한 움직임 검출 알고리즘을 구현하고 검증하였다.
논문에서는 비디오 감시 시스템을 기반으로 축사 내 환경 및 상황을 모니터링하고 최적의 번식 적기를 판별하기 위한 시스템을 제안한다. 본 논문에서 제안된 시스템은 영상 데이터로부터 각 프레임의 Motion History Image 처리를 이용하여 움직임 벡터를 추출하고 이를 유효한 움직임 벡터로 분류한다. 움직임 벡터의 크기와 방향이 임계값보다 큰 경우 해당 장면을 특정 상황으로 분류한다. 실제 촬영한 영상 데이터를 통해 실험한 결과, 승가 상황에서 확연한 결과값의 차이가 있었고, 이를 이용하여 한우의 승가 상황 검출이 가능함을 확인하였다.
본 논문에서는 MHI(Motion History Image)의 형태학적 정보를 이용하여 동작을 인식하는 제스처 인식(Gesture Recognition) 시스템을 제안한다. 입력되는 영상으로부터 동작에 관한 정보를 제공하는 MHI를 획득하고, 이 MHI로부터 x, y 각각의 좌표에 대한 기울기(gradient) 영상을 추출한다. 각각의 기울기 영상에 형태 문맥기법(shape context method)을 적용하여 형태 정보를 추출하고, 추출된 형태 정보 값들을 특징 값으로 사용한다. 이렇게 획득한 특징값들을 최종적으로 SVM(Support Vector Machine) 분류기로 학습 및 분류하여 동작을 인식한다. 제안하는 시스템은 MHI의 형태학적인 정보들을 사용함으로써 동작의 방향성을 인식할수 있고 다수 사람의 동작 인식이 가능하다. 뿐만 아니라 간단한 특징 추출 방법으로 높은 인식률의 시스템을 구현하였다.
최근 컴퓨터비젼 분야에서 이벤트 검출 및 인식이 활발히 연구되고 있으며, 도전적인 주제들 중 하나이다. 본 논문에서는 사무실 환경에서 발생할 수 있는 이벤트의 검출 및 인식을 위한 방법을 제안한다. 제안된 방법은 MHI(Motion History Image) 시퀀스(sequence)를 이응한 인간의 모션을 분석하며, 사람의 처형과 착용한 옷의 종류와 색상, 그리고 카메라로부터의 위치관계에 불변한 특성을 가진다. 제안된 방법은 기존의 방법들 중, 칼라 정보를 이용한 방법에 비해 조명의 변화에 민감하지 않은 장점이 있으며, 관심의 대상이 되는 객체의 외형과 같은 사전지식에 의존하는 방법에 비해 스케일에 민감하지 않은 장점이 있다. 에지검출 기술을 HMI 순서 영상 정보와 결합하여 사람 모션의 기하학적 특징을 추출한 후, 이벤트 인식의 기본정보로 활용한다. 제안된 방법은 단순한 이벤트 검출 프레임웍을 사용하기 때문에 검출하고자 하는 이벤트의 설명만을 첨가하는 것으로 확장이 가능하다. 또한, 제안된 방법은 컴퓨터비젼 기술에 기반한 많은 감시시스템 뿐 아니라 상황인식 기반의 이벤트 검출 시스템에 핵심기술이다.
최근 컴퓨터 비젼이나 게임과 같은 분야에서 사람의 모션을 이용한 다양한 콘텐츠들이 개발되고 있다. 모션을 이용하여 콘텐츠를 제작하거나 응용프로그램을 개발하게 되면, 사용자는 게임이나 콘텐츠에 더욱 몰입감을 느낄 수 있고, 그에 따른 콘텐츠 사용의 만족도가 향상된다. 본 논문에서는 웹 카메라를 이용해서 캡처한 영상으로부터 모션을 인식하고, 이를 별도의 장비 없이 게임의 인터페이스로 활용할 수 있는 방법을 개발한다. 제안된 방법은 MHI(Motion History Image)와 피부색 검출 결과를 결합하여 입력영상으로부터 사람의 머리 부분을 분할하고, MHI 시퀀스(Sequence)를 이용하여 방향과 이동거리를 계산한다. 실험결과에서 제안된 사람의 머리 모션 인식 결과를 실제 게임에 적용하여 게임 캐릭터를 제어하기 위해 사용하였다. 제안된 방법은 사용자의 몰입감 정도를 향상시킬 수 있음을 증명하였고, 그로인해 기능성 게임의 사용자 인터페이스로의 가능성을 확인하였다.
In this paper, a method is proposed to recognize human actions as nonverbal expression; the proposed method is composed of two steps which are action representation and action recognition. First, MHI(Motion History Image) is used in the action representation step. This method includes segmentation based on depth information and generates spatio-temporal templates to describe actions. Second, CNN(Convolution Neural Network) which includes feature extraction and classification is employed in the action recognition step. It extracts convolution feature vectors and then uses a classifier to recognize actions. The recognition performance of the proposed method is demonstrated by comparing other action recognition methods in experimental results.
거울 신경 세포는 동물이 어떤 동작을 할 때와 그 동물이 다른 동물의 동일한 동작을 하는 것을 관찰 할 때, 똑같은 세포 발화를 하는 신경세포이다. 본 논문에서는 거울 신경 세포의 발화 원리를 이용하여 비슷한 방법으로 보이지 않는 부분에 대한 객체의 움직임을 추적하는 방법을 3차원 재구축 방법을 통해 제안한다. 거울 신경 세포 시스템과 같은 발화 원리를 통해 의도 인지 시스템을 구축하기 위해, 스테레오 카메라를 통해 획득한 두 개의 이미지 데이터를 통해 깊이 정보를 계산하여 3차원으로 재구축한다. 3차원 재구축을 통해 만들어진 이미지 데이터를 옵티컬 플로우를 사용하여 3차원 이미지에서 객체의 움직임 방향을 추정한다. Estimation 알고리즘인 칼만 필터를 사용하여 객체의 움직임 추정을 잡음에 강인하게 한다. 객체의 움직임 추정을 통하여 객체의 움직임에 따라 구축된 이미지 데이터를 히스토리화 하여 데이터를 저장한다. 객체의 일부분 혹은 전체가 다른 물체로 인해 가려져 스테레오 카메라 시야에서 사라졌을 때, 과거에 저장된 히스토리로 부터 데이터를 가져와 가려진 부분에 대한 객체의 원래의 모습을 복원한다. 이 복원을 통하여 움직임 추정을 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.