• Title/Summary/Keyword: Motion Estimation (ME)

Search Result 107, Processing Time 0.033 seconds

Integer-Pel Motion Estimation for HEVC on Compute Unified Device Architecture (CUDA)

  • Lee, Dongkyu;Sim, Donggyu;Oh, Seoung-Jun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.397-403
    • /
    • 2014
  • A new video compression standard called High Efficiency Video Coding (HEVC) has recently been released onto the market. HEVC provides higher coding performance compared to previous standards, but at the cost of a significant increase in encoding complexity, particularly in motion estimation (ME). At the same time, the computing capabilities of Graphics Processing Units (GPUs) have become more powerful. This paper proposes a parallel integer-pel ME (IME) algorithm for HEVC on GPU using the Compute Unified Device Architecture (CUDA). In the proposed IME, concurrent parallel reduction (CPR) is introduced. CPR performs several parallel reduction (PR) operations concurrently to solve two problems in conventional PR; low thread utilization and high thread synchronization latency. The proposed encoder reduces the portion of IME in the encoder to almost zero with a 2.3% increase in bitrate. In terms of IME, the proposed IME is up to 172.6 times faster than the IME in the HEVC reference model.

Adaptive Search Range Decision for Accelerating GPU-based Integer-pel Motion Estimation in HEVC Encoders (HEVC 부호화기에서 GPU 기반 정수화소 움직임 추정을 고속화하기 위한 적응적인 탐색영역 결정 방법)

  • Kim, Sangmin;Lee, Dongkyu;Sim, Dong-Gyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.699-712
    • /
    • 2014
  • In this paper, we propose a new Adaptive Search Range (ASR) decision algorithm for accelerating GPU-based Integer-pel Motion Estimation (IME) of High Efficiency Video Coding (HEVC). For deciding the ASR, we classify a frame into two models using Motion Vector Differences (MVDs) then adaptively decide the search ranges of each model. In order to apply the proposed algorithm to the GPU-based ME process, starting points of the ME are decided using only temporal Motion Vectors (MVs). The CPU decides the ASR as well as the starting points and transfers them to the GPU. Then, the GPU performs the integer-pel ME. The proposed algorithm reduces the total encoding time by 37.9% with BD-rate increase of 1.1% and yields 951.2 times faster ME against the CPU-based anchor. In addition, the proposed algorithm achieves the time reduction of 57.5% in the ME running time with the negligible coding loss of 0.6%, compared with the simple GPU-based ME without ASR decision.

Fast Motion Estimation Algorithm Using the Continuity of Motion (운동의 연속성을 이용한 고속 움직임 추정 기법에 관한 연구)

  • 송병철;임경원;나종범
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1995.06a
    • /
    • pp.131-135
    • /
    • 1995
  • As the search range increases, most fast ME algorithms can not keep the performance comparable to the full search BMA. In this paper, we propose a new fast motion estimation method which locates the small search area for a block of the current frame. This method is based on interframe correlation of motion vectors as well as intraframe correlation. Especially, the proposed algorithm outperforms other fast methods when the motion is very fast or complex. It drastically reduces computational complexity while maintaining good performance compared with the conventional FS-BMA.

Motion Estimation using new blocks based on the Frame Difference for Frame Rate-up Conversion

  • Kwak, Tong-Ill;Yun, Jong-Ho;Cho, Hwa-Hyun;Choi, Myung-Ryul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1043-1046
    • /
    • 2008
  • In this paper, we propose a Motion Estimation (ME) using new blocks based on the Frame Difference (FD) between two adjacent frames for Frame Rate-up Conversion (FRC). The proposed algorithm decides the shape of blocks by the FD. The experimental results show that the proposed method has better performance than conventional methods.

  • PDF

Motion Estimation Algorithm for Frame Interpolation in Video Sequence with Luminance Variation (밝기 변화가 있는 영상에서 프레임 보간을 위한 움직임 추정 알고리즘)

  • Kwak, Tong-Ill;Hwang, Bo-Hyun;Lee, Seung-Joon;Yun, Jong-Ho;Choi, Myung-Ryul
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.787-788
    • /
    • 2008
  • In this paper, we propose a Motion Estimation (ME) based on Frame Difference (FD) for frame interpolation in video sequence with luminance variation. Proposed algorithm uses limited blocks whose motion is predicted by FD for ME. The Block average of current and previous frame for the blocks which has no motion variation is used as interpolated block. In experiments, the proposed algorithm shows better performance than conventional algorithms.

  • PDF

Efficient Computing Algorithm for Inter Prediction SAD of HEVC Encoder (HEVC 부호기의 Inter Prediction SAD 연산을 위한 효율적인 알고리즘)

  • Jeon, Sung-Hun;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.397-400
    • /
    • 2016
  • In this paper, we propose an efficient algorithm for computing architecture for high-performance Inter Prediction SAD HEVC encoder. HEVC Motion Estimation (ME) of the Inter Prediction is a process for searching for the currently high prediction block PU and the correlation in the interpolated reference picture in order to remove temporal redundancy. ME algorithm uses full search(FS) or fast search algorithm. Full search technique has the guaranteed optimal results but has many disadvantages which include high calculation and operational time due to the motion prediction with respect to all candidate blocks in a given search area. Therefore, this paper proposes a new algorithm which reduces the computational complexity by reusing the SAD operation in full search to reduce the amount of calculation and computational time of the Inter Prediction. The proposed algorithm is applied to an HEVC standard software HM16.12. There was an improved operational time of 61% compared to the traditional full search algorithm, BDBitrate was decreased by 11.81% and BDPSNR increased by about 0.5%.

  • PDF

A study on Improvement of the performance of Block Motion Estimation Using Neighboring Search Point (인접 탐색점을 이용한 블록 움직임 추정의 성능 향상을 위한 연구)

  • 김태주;진화훈;김용욱;허도근
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.143-146
    • /
    • 2000
  • Motion Estimation/compensation(ME/MC) is one of the efficient interframe ceding techniques for its ability to reduce the high redundancy between successive frames of an image sequence. Calculating the blocking matching takes most of the encoding time. In this paper a new fast block matching algorithm(BMA) is developed for motion estimation and for reduction of the computation time to search motion vectors. The feature of the new algorithm comes from the center-biased checking concept and the trend of pixel movements. At first, Motion Vector(MV) is searched in ${\pm}$1 of search area and then the motion estimation is exploited in the rest block. The ASP and MSE of the proposed search algorithm show good performance.

  • PDF

Frame Rate Up-Conversion with Occlusion Detection Function (폐색영역탐지 기능을 갖는 프레임율 변환)

  • Kim, Nam-Uk;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.265-272
    • /
    • 2015
  • A new technology on video frame rate up-conversion (FRUC) is presented by combining the median filter and motion estimation (ME) with an occlusion detection (OD) method. First, ME is performed to have a motion vector. Then, the OD method is used to refine motion vector in the occlusion region. Since the wrong motion vector can be obtained with high possibility in the occluded area, a median filtering that less depends on the motion vector is applied to that area, and since the motion vector is continuous and robust in the non-occluded area, BDMC(Bi-Directional Motion Compensated interpolation) is applied to obtain interpolated image in that area. BDMC using the bi-directional motion vectors achieves good results when continuity and robustness of the motion vector is higher. Experimental results show that the proposed algorithm provides better performance than the conventional approach. The average gain of PSNR (Peak Signal to Noise Ratio) is approximately 0.16 dB in the test sequences compared with BDMC.

Low Complexity Motion Estimation Based on Spatio - Temporal Correlations (시간적-공간적 상관성을 이용한 저 복잡도 움직임 추정)

  • Yoon Hyo-Sun;Kim Mi-Young;Lee Guee-Sang
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1142-1149
    • /
    • 2004
  • Motion Estimation(ME) has been developed to reduce temporal redundancy in digital video signals and increase data compression ratio. ME is an Important part of video encoding systems, since it can significantly affect the output quality of encoded sequences. However, ME requires high computational complexity, it is difficult to apply to real time video transmission. for this reason, motion estimation algorithms with low computational complexity are viable solutions. In this paper, we present an efficient method with low computational complexity based on spatial and temporal correlations of motion vectors. The proposed method uses temporally and spatially correlated motion information, the motion vector of the block with the same coordinate in the reference frame and the motion vectors of neighboring blocks around the current block in the current frame, to decide the search pattern and the location of search starting point adaptively. Experiments show that the image quality improvement of the proposed method over MVFAST (Motion Vector Field Adaptive Search Technique) and PMVFAST (Predictive Motion Vector Field Adaptive Search Technique) is 0.01~0.3(dB) better and the speedup improvement is about 1.12~l.33 times faster which resulted from lower computational complexity.

Efficient parallelization implementation technique of PU-level ME for fast HEVC encoding (고속 HEVC 부호화를 위한 효율적인 PU 레벨 움직임예측 병렬화 구현 기법)

  • Park, Soobin;Choi, Kiho;Park, Sanghyo;Jang, Eueeseon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.163-166
    • /
    • 2012
  • 본 논문에서는 차세대 비디오 표준인 High Efficiency Video Coding(HEVC)의 영상 부호화 과정의 시간복잡도 감소를 위한 효율적인 Prediction Unit(PU)레벨 움직임예측(Motion Estimation, ME) 병렬화의 구현 기법을 제시하고자 한다. 움직임예측 과정은 부호화기에서 80%의 복잡도를 차지하는 과정으로 고속 부호화의 걸림돌이 되고 있다. 이를 해결하기 위한 방법으로 제안된 것이 움직임예측 알고리즘의 병렬화이다. 알고리즘 수준에서 ME 의 일부인 Merge Estimation 의 병렬화를 위해서 Merge Estimation Region (MER)기반의 ME 방법이 제안되었다. 하지만 HEVC Test Model reference software(HM)에 반영된 MER 을 이용하여 실제로 병렬화된 ME 를 구현하는 과정에서는 알고리즘 측면에서 아직 고려되지 않은 문제들이 존재한다. 이에 본 논문에서는 MER 을 사용한 안정적인 병렬 ME 를 구현하기 위한 전략으로 각 PU 의 정보를 독립적으로 사용하기 위한 부분 순차화 방법과 메모리 접근제한을 이용한 병렬화 방법을 제시한다. 실험을 통해 본 연구의 우수성이 확인되었는데, 제안된 방법에 기반을 둔 구현에서 순차적인 ME 를 이용한 부호화기 대비 평균 25.64%의 전체 부호화 과정 시간의 감소가 나타났다.

  • PDF