• Title/Summary/Keyword: Motion Database

Search Result 194, Processing Time 0.023 seconds

Visible Assessment of Earthquake-induced Geotechnical Hazards by Adopting Integrated Geospatial Database in Coastal Facility Areas (복합 공간데이터베이스 적용을 통한 해안 시설영역 지진 유발 지반재해의 가시적 평가)

  • Kim, Han-Saem;Sun, Chang-Guk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.171-180
    • /
    • 2016
  • Earthquake event keeps increasing every year, and the recent cases of earthquake hazards invoke the necessity of seismic study in Korea, as geotechnical earthquake hazards, such as strong ground motion, liquefaction and landslides, are a significant threat to structures in industrial hub areas including coastal facilities. In this study, systemized framework of integrated assessment of earthquake-induced geotechnical hazard was established using advanced geospatial database. And a visible simulation of the framework was specifically conducted at two coastal facility areas in Incheon. First, the geospatial-grid information in the 3D domain were constructed with geostatistical interpolation method composed of multiple geospatial coverage mapping and 3D integration of geo-layer construction considering spatial outliers and geotechnical uncertainty. Second, the behavior of site-specific seismic responses were assessed by incorporating the depth to bedrock, mean shear wave velocity of the upper 30 m, and characteristic site period based on the geospatial-grid. Third, the normalized correlations between rock-outcrop accelerations and the maximum accelerations of each grid were determined considering the site-specific seismic response characteristics. Fourth, the potential damage due to liquefaction was estimated by combining the geospatial-grid and accelerations correlation grid based on the simplified liquefaction potential index evaluation method.

Application of Store Separation Wind Tunnel Test Technique into CFD (외장분리 풍동시험 기법의 전산유체해석 적용)

  • Son, Chang-Hyeon;Kim, Sang-Hun;Woo, Heekyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.263-272
    • /
    • 2021
  • In this study, aerodynamic coefficients obtained from Computational Fluid Dynamics (CFD) using wind tunnel test-like method is compared with coefficients obtained by actual wind tunnel test. Unsteady analysis has performed with using harmonic equation for motion of the external store. Aerodynamic database is generated based on CFD results to simulate 6 degree-of-freedom store separation analysis. Trajectory is obtained from simulation using both CFD-based and test-based database, and results are compared with trajectory from flight test result. It is concluded that generation of database based on CFD with wind tunnel test technique is valid from good agreement of the trajectory.

Numerical Prediction of Vaporizing Spray by using Large Eddy Simulation in Swirling Flows

  • Itoh Yuichi;Taniguchi Nobuyuki;Kobayashi Toshio
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.246-247
    • /
    • 2003
  • Large Eddy Simulation(LES) of turbulent spray combustion flow was conducted. An experimental database for the laboratory spray combustor is chosen to validate the present numerical simulation. The governing equations for the gas phases are discretized in three-dimensional curvilinear boundary-fitted coordinate system, and the fuel droplet motion equations are described in Lagrangian representation. The numerical results are compared with the experiment for the gas-phase mean velocities and its fluctuation in cold flow condition. Three dimensional vortical structures are well visualized and droplet motion is well predicted.

  • PDF

Development of assessment system based on motion analysis and standard motion database using Mocap (동작분석 기반 훈련자 평가 모듈의 개발과 모션캡쳐 장비를 활용한 훈련 표준동작 DB 구축)

  • Lee, Jai-Kyung;Huh, Young Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.1065-1066
    • /
    • 2015
  • 화학공장, 플랜트 등 대형 기계설비 내에서 발생하는 각종 사고에 대한 대응훈련은 훈련시간 및 비용 증가, 훈련자의 안전 확보가 어렵고 반복적인 훈련 및 평가가 어렵기 때문에 실제 사고상황을 가상공간 내에 구현한 가상현실 기반 훈련 시뮬레이터의 필요성이 증대되고 있다. 본 논문에서는 시뮬레이터 훈련자 평가를 위하여 동작분석 기반 훈련자 평가 모듈을 개발하고 훈련평가에 활용하기 위하여 모션캡쳐 장비를 활용한 훈련 표준동적 DB를 구축하였다. 훈련자의 특정 동작을 구축된 DB를 활용하여 표준동작과의 비교를 통하여 효율적인 훈련을 위한 피드백과 함께 정량화된 평가점수 제공을 통해 정량적인 훈련평가에 활용할 수 있다. 또한 평가 결과의 시각화를 통해 직관적인 훈련개선이 가능하도록 하였다.

Video Saliency Detection Using Bi-directional LSTM

  • Chi, Yang;Li, Jinjiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2444-2463
    • /
    • 2020
  • Significant detection of video can more rationally allocate computing resources and reduce the amount of computation to improve accuracy. Deep learning can extract the edge features of the image, providing technical support for video saliency. This paper proposes a new detection method. We combine the Convolutional Neural Network (CNN) and the Deep Bidirectional LSTM Network (DB-LSTM) to learn the spatio-temporal features by exploring the object motion information and object motion information to generate video. A continuous frame of significant images. We also analyzed the sample database and found that human attention and significant conversion are time-dependent, so we also considered the significance detection of video cross-frame. Finally, experiments show that our method is superior to other advanced methods.

Design of Three-Finger Hand System

  • Shim, Byoung-Kyun;Lee, Woo-Song;Park, In-Man;hwang, Won-Jun;Kim, Won-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • The focus of this paper is the designing a flexible three fingered hand system with 16 D.O.F for dynamic manipulation with an intelligent controller, and to build a useful database for dynamic manipulation based on the experimental results. The weight of the hand module is only 0.7 kg, but flexible motion and powerful grasping are possible. To achieve such a dynamic motion in a robotic hand, we have developed a flexible fingered hand with a control system incorporating image recognition system in which we deal with the problems of not only accuracy and range of motion but also the flexibility of hand. The fingers are arranged so as to grasp both circular and prismatic objects. In order to achieve the light mechanism, we reduced the number of joints and fingers as much as possible. We used three fingers, which is the minimum number to achieve a stable grasp.

Kinematic and Kinetic Analysis of the Soft Golf Swing using Realistic 3D Modeling Based on 3D Motion Tracking

  • Kim, Yong-Yook;Kim, Sung-Hyun;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.744-749
    • /
    • 2007
  • Kinematic and kinetic analysis has been performed for Soft Golf swings utilizing realistic three dimensional computer simulations based on three dimensional motion tracking data. Soft Golf is a newly developed recreational sport in South Korea aimed to become a safe and easy-to-learn sport for all ages. The advantage of Soft Golf stems from lighter weight of the club and much larger area of the sweet spot. This paper tries to look into kinematic and kinetic aspects of soft golf swings compared to regular golf swing and find the advantages of lighter Soft Golf clubs. For this purpose, swing motions of older aged participants were captured and kinematic analysis was performed for various kinematic parameters such as club head velocity, joint angular velocity, and joint range of motions as a pilot study. Kinetic analysis was performed by applying kinematic data to computer simulation models constructed from anthropometric database and the measurements from the participants. The simulations were solved using multi-body dynamics solver. Firstly, the kinematic parameters such as joint angles were obtained by solving inverse dynamics problem based on motion tracking data. Secondly, the kinetic parameters such as joint torques were obtained by solving control dynamics problem of making joint torque to follow pre-defined joint angle data. The results showed that mechanical loadings to major joints were reduced with lighter Soft Golf club.

A Study on Flexible Control and Design of Robot Hand Fingers with Eight Axes for Smart Factory

  • Sim, Hyun-Seok;Bae, Ho-Young;Kim, Du-Beum;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.183-189
    • /
    • 2018
  • The focus of this paper is to design and control a three fingered hand system with eight axes for smart factory with an flexible controller, and to keep a useful big database for dynamic manipulation based on the experimental results. The weight of the hand module is only 1.2 kg, but flexible motion and powerful grasping are possible. To achieve such a flexible motion control of a robotic hand, we have developed a robust and precise fingered hand with a control system incorporating image recognition system in which we deal with the problems of not only accuracy and range of motion but also the flexibility of hand. The fingers are arranged so as to grasp both circular and prismatic objects. In order to achieve the light mechanism, we reduced the number of joints and fingers as much as possible. In this study, it was used three fingers with eight axes which is the optimal number to achieve a robust grasping diverse shape parts for smart factory.

Design of Three-Finger Hand System (3핑거 핸드 시스템 설계)

  • Thu, Le Xuan;Han, Sung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.71-76
    • /
    • 2008
  • The focus of this paper is the designing a flexible three fingered hand system with 16 D.O.F for dynamic manipulation with an intelligent controller, and to build a useful database for dynamic manipulation based on the experimental results. The weight of the hand module is only 0.7 kg, but flexible motion and powerful grasping are possible. To achieve such a dynamic motion in a robotic hand, we have developed a flexible fingered hand with a control system incorporating image recognition system in which we deal with the problems of not only accuracy and range of motion but also the flexibility of hand. The fingers are arranged so as to grasp both circular and prismatic objects. In order to achieve the light mechanism, we reduced the number of joints and fingers as much as possible. We used three fingers, which is the minimum number to achieve a stable grasp.

A Study of Mechanism Synthesis of One-Degree-of-Freedom Planar Linkages with Revolute Joints (회전대우를 갖는 1자유도 평면기구의 기구합성에 관한 연구)

  • 조선휘;신동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1330-1341
    • /
    • 1993
  • The kinematic synthesis deals with the systematic design of mechanisms for a given performance. The area of synthesis may be grouped into two categories to determine the type and to size the dimensions of a mechanism for a specified task. In this paper, using a database of mechanisms a designer can determine the type of mechanism conveniently and design equations are automatically generated for a given input performance. The solving method of design equations utilizes an optimization routine to obtain roots effectively. The linkages of 4, 6, and 8bars with revolute joints are considered in this study but may be extended to linkages of more bars.