• Title/Summary/Keyword: Motion Damping system

Search Result 385, Processing Time 0.024 seconds

Model Test for Heave Motion Reduction of a Circular Cylinder by a Damping Plate (감쇠판에 의한 원기둥의 상하운동 저감 모형시험)

  • Koh, Hyeok-Jun;Kim, Jeong-Rok;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.76-82
    • /
    • 2013
  • Motion reduction of an offshore structure at resonant frequency is essential for avoiding critical damage to the topside and mooring system. A damping plate has a distinct advantage in reducing the motion of a floating structure by increasing the added mass and the damping coefficient. In this study, the heave motion responses of a circular cylinder with an impermeable and a permeable damping plate attached at the bottom of the cylinder were investigated thru a model test. The viscous damping coefficients for various combinations of porosity were obtained from a free-decay test by determining the ratio between any pair of successive amplitudes. Maximum energy dissipation occurred at a porous plate with a porosity P = 0.1008. Experimental results for regular and irregular waves were compared with an analytical solution by Cho (2011). The measured heave RAO and spectrum reasonably followed the trends of the predicted values. A significant motion reduction at resonant frequency was pronounced and the heaving-motion energy calculated by the integration of the area under the heave motion spectrum was reduced by more than 75% by the damping plate. However, additional energy dissipation by eddies of strong vorticity and flow separation inside a porous damping plate was not found in the present experiments.

A Study on the Wave Drift Damping of a Moored Ship in Waves (파랑중 계류된 선박의 표류감쇠에 관한 연구)

  • 이호영;박홍식;신현경
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.17-22
    • /
    • 2000
  • As the offshore oil fields are moved to the deep ocean, the oil production system of FPSO(Floating Production Storage and Offloading System) Type are constructed frequently these days. So, it is very important to estimate the drift motion and damping effects due to the drift motion simultaneously. The components of slow drift motion damping consist of viscous, wave radiation effect and wave drift damping. It is needed to estimate the wave drift damping more accurately than others. The wave drift damping signifies the time-rate of mean wave drift force on oscillating ship or ocean structure which constant speed. In order to calculate this, the 3-Dimensional panel method is employed with the translating and pulsating Green function in the frequency domain. The calculation is carried out for a Series 60 ($C_B$/=0.7) and the results are compared with other numerical ones.

  • PDF

Hydrodynamic Forces Characteristics of a Circular Cylinder with a Damping Plate (감쇠판이 부착된 원기둥의 동유체력 특성)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The radiation of water waves by a heaving truncated circular cylinder with damping plate is solved in the frame of the three-dimensional linear potential theory. The damping plate has a distinct advantage in reducing the motion response of a floating circular cylinder by increasing the added mass and the damping coefficient. Using the matched eigenfunction expansion method, the characteristics of hydrodynamic added mass and the damping coefficient are investigated with various system parameters, such as the radius and submergence depth of the damping plate. It is found that both added mass and the damping coefficient are significantly increased due to the arranged features of the larger damping plate with shallow submergence, which are positive factors as a motion reduction device of the floating offshore platform. Also the numerical results for an oscillating submerged disk show that the added mass is negative and that the damping coefficient has a peak value at resonant frequency when submergence depth is sufficiently small.

Estimation of damping induced by taut mooring lines

  • Xiong, Lingzhi;Lu, Wenyue;Li, Xin;Guo, Xiaoxian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.810-818
    • /
    • 2020
  • A moored floating structure may exhibit resonant motion responses to low-frequency excitations. Similar to the resonant responses of many vibration systems, the motion amplitude of a moored floating structure is significantly affected by the damping of the entire system. In such cases, the damping contributed by the mooring lines sometimes accounts for as much as 80% of the total damping. While the damping induced by catenary mooring lines is well-investigated, few studies have been conducted on the damping induced by taut mooring lines, especially one partly embedded in soil. The present study develops a simple but accurate model for estimating the damping contributed by mooring lines. A typical type of taut mooring line was used as the reference and the hydrodynamic drag force and soil resistance were taken into consideration. The proposed model was validated by comparing its predictions with those of a previously developed model and experimental measurements obtained by a physical model. Case studies and sensitivity studies were also conducted using the validated model. The damping induced by the soil resistance was found to be considerably smaller than the hydrodynamic damping. The superposition of the wave frequency motion on the low-frequency motion was also observed to significantly amplify the damping induced by the mooring lines.

Concept Design of a Parallel-type Tuned Mass Damper - Tuned Sloshing Damper System for Building Motion Control in Wind

  • Lee, Chien-Shen;Love, J. Shayne;Haskett, Trevor C.;Robinson, Jamieson K.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.93-97
    • /
    • 2021
  • Supplementary damping systems, such as tuned mass dampers (TMDs) and tuned sloshing dampers (TSDs) - also known as tuned liquid dampers (TLDs) - have been successfully employed to reduce building motion during wind events. A design of a damping system consisting of a TMD and two TSDs performing in unison has been developed for a tall building in Taiwan to reduce wind-induced motion. The architecturally exposed TMD will also be featured as a tourist attraction. The dual-purpose TSD tanks will perform as fire suppression water storage tanks. Linearized equivalent mechanical TSD and TMD models are coupled to the structure to simulate the multi-degree of freedom system response. Frequency response curves for the structure with and without the damping system are created to evaluate the performance of the damping system. The performance of the combined TMD-TSD system is evaluated against a conventional TMD system by computing the effective damping produced by each system. The proposed system is found to have superior performance in acceleration reduction. The combined TMD-TSD system is an effective and affordable means to reduce the wind-induced resonant response of tall buildings.

Input energy spectrum damping modification factors

  • Onur Merter;Taner Ucar
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.219-228
    • /
    • 2024
  • This study examines damping modification factors (DMFs) of elastic input energy spectra corresponding to a set of 116 earthquake ground motions. Mean input energy per mass spectra and mean DMFs are presented for both considered ground motion components. Damping ratios of 3%, 5%, 10%, 20%, and 30% are used and the 5% damping ratio is considered the benchmark for DMF computations. The geometric mean DMFs of the two horizontal components of each ground motion are computed and coefficients of variation are presented graphically. The results show that the input energy spectra-based DMFs exhibit a dependence on the damping ratio at very short periods and they tend to be nearly constant for larger periods. In addition, mean DMF variation is obtained graphically for also the damping ratio, and mathematical functions are fitted as a result of statistical analyses. A strong correlation between the computed DMFs and the ones from predicted equations is observed.

Estimation of viscous and Coulomb damping from free-vibration data by a least-squares curve-fitting analysis

  • Slemp, Wesley C.H.;Hallauer, William L. Jr.;Kapania, Rakesh K.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.279-290
    • /
    • 2008
  • The modeling and parameter estimation of a damped one-degree-of-freedom mass-spring system is examined. This paper presents a method for estimating the system parameters (damping coefficients and natural frequency) from measured free-vibration motion of a system that is modeled to include both subcritical viscous damping and kinetic Coulomb friction. The method applies a commercially available least-squares curve-fitting software function to fit the known solution of the equations of motion to the measured response. The method was tested through numerical simulation, and it was applied to experimental data collected from a laboratory mass-spring apparatus. The mass of this apparatus translates on linear bearings, which are the primary source of light inherent damping. Results indicate that the curve-fitting method is effective and accurate for both perfect and noisy measurements from a lightly damped mass-spring system.

A Study on the Wave Drift Damping of Ship in Waves (파랑중 선박의 표류감쇠에 관한 연구)

  • 이호영;박홍식;신현경
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.7-12
    • /
    • 2000
  • As the offshore oil fields are moved to the deep ocean, the oil production systems of FPSO(Floating production storage and offloading system) are building these days and so it is the most important to estimate the drift motion and damping effects the drift motion importantly. The components of damping consist of viscous, wave radiation effect and wave drift damping. It is need to estimate the wave drift damping exactly among them. The wave drift damping means the change rate of mean wave drift force with respect to the ship and ocean structures speed. In order to calculate this, the 3-Dimensional panel method used to translating and pulsating Green function is adopted. The calculation is carried out for series 60(CB = 0.7) vessel and the results are compared with other theoretical ones.

  • PDF

Stability Analysis of an Asymmetric Shaft with Internal Damping (내부감쇠가 있는 축비대칭 구동축의 안정성 해석)

  • Shin, Eung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • This paper intends to provide the whirling characteristics of an asymmetric rotor-shaft system with a non-ideal DC motor. The equations of motion have been derived in terms of system parameters such as the internal/external damping, the asymmetry and the motor voltage. By imposing the conditions that the motor input power should be balanced by the dissipated power, steadystate whirling characteristics are obtained such as the whirling amplitude, the whirling frequency and the stability diagrams. Results show that the whirling stability is affected by the internal/external damping and the asymmetry as well as the motor voltage. Also, the whirling amplitude at the steadystate is increased and the motor speed is lowered as the internal damping becomes higher or the external damping is reduced. In addition, the asymmetry causes the variation of the whirling orbit, which becomes splitted into two distinct trajectories. Finally, non-ideal characteristics of the DC motor is found to reduce the whirling motion in case of steadystate whirling with high asymmetry and high internal damping.

Effects of excitation characteristics on the equivalent linear system of a building structure with MR dampers (MR감쇠기가 설치된 구조물의 등가선형 시스템에 대한 가진 특성의 영향)

  • Park, Ji-Hun;Min, Kyung-Won;Moon, Byoung-Wook;Park, Eun-Churn
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.503-510
    • /
    • 2006
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with an MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with an MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed.

  • PDF