• Title/Summary/Keyword: Most Reliable Path Problem

Search Result 12, Processing Time 0.027 seconds

A Path Planning to Maximize Survivability for Unmanned Aerial Vehicle based on 3-dimensional Environment (3차원 환경 기반 무인 항공기 생존성 극대화를 위한 이동 경로 계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.304-313
    • /
    • 2011
  • An Unmanned Aerial Vehicle(UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are currently employed in many military missions(surveillance, reconnaissance, communication relay, targeting, strike etc.) and a number of civilian applications(communication service, broadcast service, traffic control support, monitoring, measurement etc.). For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is the path planning to maximize survivability for UAV based on 3-dimensional environment. A mathematical programming model is suggested by using MRPP(Most Reliable Path Problem) and solved by transforming MRPP into SPP(Shortest Path Problem). This study also suggests a $A^*PS$ algorithm based on 3-dimensional environment to UAV's path planning. According to comparison result of the suggested algorithm and SPP algorithms (Dijkstra, $A^*$ algorithm), the suggested algorithm gives better solution than SPP algorithms.

A Selection of Path Planning Algorithm to Maximize Survivability for Unmanned Aerial Vehicle (무인 항공기 생존성 극대화를 위한 이동 경로 계획 알고리즘 선정)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.103-113
    • /
    • 2011
  • This research is to select a path planning algorithm to maximize survivability for Unmanned Aerial Vehicle(UAV). An UAV is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are currently employed in many military missions(surveillance, reconnaissance, communication relay, targeting, strike etc.) and a number of civilian applications(communication service, broadcast service, traffic control support, monitoring, measurement etc.). In this research, a mathematical programming model is suggested by using MRPP(Most Reliable Path Problem) and verified by using ILOG CPLEX. A path planning algorithm for UAV is selected by comparing of SPP(Shortest Path Problem) algorithms which transfer MRPP into SPP.

Mission Path Planning to Maximize Survivability for Multiple Unmanned Aerial Vehicles based on 3-dimensional Grid Map (3차원 격자지도 기반 생존성 극대화를 위한 다수 무인 항공기 임무경로 계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.25 no.3
    • /
    • pp.365-375
    • /
    • 2012
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for humans. UAVs are currently employed in many military missions and a number of civilian applications. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$_PGA (A-star with Post Smoothing_Parallel Genetic Algorithm) for Multiple UAVs's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and MTSP (Multiple Traveling Salesman Problem). After transforming MRPP into Shortest Path Problem (SPP),$A^*PS$_PGA applies a path planning for multiple UAVs.

Visualization of Graph Search Algorithm using Java (자바를 이용한 그래프 검색 알고리즘의 시각화)

  • Jung, Yeon-Jin;Cheon, Sang-Hyun;Kim, Eun-Kyu;Lee, Kwang-Mo;Choi, Hong-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04b
    • /
    • pp.1165-1168
    • /
    • 2001
  • 최단경로문제(Shortest Path Problem)는 네트???p에서 하나 혹은 그 이상의 노드들의 쌍 사이에서 가장 짧은 경로, 가장 저렴한 경로 또는 가장 신뢰할 만한 경로를 찾을 때 고려된다. 컴퓨터나 통신망들은 edge-weighted 그래프로 대치될 수 있으며 그렇게 함으로써 최단 경로를 찾아줄 수 있다. 통신 링크는 실제 실패할 수도 있고, 또한 전송될 데이터의 양에 따라 전달되는 시간이 달라지기도 하므로, 가장 신뢰할만한 경로 중에서 가장 빠른 경로(The Quickest Most Reliable Path) 문제와 가장 빠른 경로 중에서 가장 신뢰할만한 경로(The Most Reliable Quickest Path) 문제는 최단경로문제보다 더 현실적이다[1]. 이 논문에서는 그 중 '가장 신뢰할만한 경로 중에서 가장 빠른 경로' 문제를 자바를 사용하여 시각화함으로써 가변 상황에 따라 다른 경로를 찾아주는 과정을 보여준다.

  • PDF

A Path Planning to Maximize Survivability for Unmanned Aerial Vehicle by using $A^*PS$-PGA ($A^*PS$-PGA를 이용한 무인 항공기 생존성 극대화 경로계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.24-34
    • /
    • 2011
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for human. UA V s are currently employed in many military missions such as reconnaissance, surveillance, enemy radar jamming, decoying, suppression of enemy air defense (SEAD), fixed and moving target attack, and air-to-air combat. UAVs also are employed in a number of civilian applications such as monitoring ozone depletion, inclement weather, traffic congestion, and taking images of dangerous territory. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$-PGA (A-star with Post Smoothing-Parallel Genetic Algorithm) for an UAV's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and TSP (Traveling Salesman Problem). A path planning algorithm for UAV is applied by transforming MRPP into SPP (Shortest Path Problem).

A Development of Fire Evacuation Simulation System Based 3D Modeling (3차원 공간 기반의 화재피난 시뮬레이션 시스템 개발)

  • Hwang, Yeon-Jung;Koo, Won-Yong;Hwang, Yen-Kyung;Youn, Ho-Ju
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.156-167
    • /
    • 2011
  • The number of buildings is growing at a rapid pace in Korea. It is driven by significant economic improvements, the rapid population growth and urban centralization. Such being this case, some city are underway to building enlargement, Manhattanization. To Solve these problem and ensure the safety of live, fire Evacuation Simulation system is used for safe check of buildings. Forecasting an egress behavior in building fire is so important in order to construct a safe and reliable environment. But, currently most of the fire evacuation simulation system used in practice are foreign software that is not reflect korean conditions. Thus, This study focus on objectives that develop a fire evacuation system considering Korean Characteristics and create 3D space-based topology. so the system calculate evacuation path. This system developed as a result of research can be used by architectural designer in practice due to it is based 3D spatial information modeling.

Mobility-Aware Service Migration (MASM) Algorithms for Multi-Access Edge Computing (멀티 액세스 엣지 컴퓨팅을 위한 Mobility-Aware Service Migration (MASM) 알고리즘)

  • Hamzah, Haziq;Le, Duc-Tai;Kim, Moonseong;Choo, Hyunseung
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2020
  • In order to reach Ultra-Reliable Low-Latency communication, one of 5G aims, Multi-access Edge Computing paradigm was born. The idea of this paradigm is to bring cloud computing technologies closer to the network edge. User services are hosted in multiple Edge Clouds, deployed at the edge of the network distributedly, to reduce the service latency. For mobile users, migrating their services to the most proper Edge Clouds for maintaining a Quality of Service is a non-convex problem. The service migration problem becomes more complex in high mobility scenarios. The goal of the study is to observe how user mobility affects the selection of Edge Cloud during a fixed mobility path. Mobility-Aware Service Migration (MASM) is proposed to optimize service migration based on two main parameters: routing cost and service migration cost, during a high mobility scenario. The performance of the proposed algorithm is compared with an existing greedy algorithm.

Design of Adaptive DCF algorithm for TCP Performance Enhancement in IEEE 802.11 based Mobile Ad-hoc Networks (IEEE 802.11 기반 이동 ad-hoc 망에서 TCP 성능 향상을 위한 적응적 DCF 알고리즘 설계)

  • Kim, Han-Jib;Lee, Gi-Ra;Lee, Jae-Yong;Kim, Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.10 s.352
    • /
    • pp.79-89
    • /
    • 2006
  • TCP is the most widely used transport protocol in Internet applications that guarantees a reliable data transfer. But, in the wireless multi-hop networks, TCP performance is degraded because it is designed for wired networks. The main reasons of TCP performance degradation are contention for wireless medium at the MAC layer, hidden terminal problem, exposed terminal problem, packet losses in the link layer, unfairness problem, reordering problem caused by path disconnection, bandwidth waste caused by exponential backoff of retransmission timer due to node's mobility and so on. Specially, in the mobile ad-hoc networks, discrepancy between a station's transmission range and interference range produces hidden terminal problem that decreases TCP performance greatly by limiting simultaneous transmission at a time. In this paper, we propose a new MAC algorithm for mobile ad-hoc networks to solve the problem that a node can not transmit and just increase CW by hidden terminal. In the IEEE 802.11 MAC DCF, a node increases CW exponentially when it fails to transmit, but the proposed algorithm, changes CW adaptively according to the reason of failure so we get a TCP performance enhancement. We show by ns-2 simulation that the proposed algorithm enhances the TCP performance by fairly distributing the transmission opportunity to the failed nodes by hidden terminal problems.

Comprehensive evaluation of structural geometrical nonlinear solution techniques Part II: Comparing efficiencies of the methods

  • Rezaiee-Pajand, M.;Ghalishooyan, M.;Salehi-Ahmadabad, M.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.879-914
    • /
    • 2013
  • In part I of the article, formulation and characteristics of the several well-known structural geometrical nonlinear solution techniques were studied. In the present paper, the efficiencies and capabilities of residual load minimization, normal plane, updated normal plane, cylindrical arc length, work control, residual displacement minimization, generalized displacement control and modified normal flow will be evaluated. To achieve this goal, a comprehensive comparison of these solution methods will be performed. Due to limit page of the article, only the findings of 17 numerical problems, including 2-D and 3-D trusses, 2-D and 3-D frames, and shells, will be presented. Performance of the solution strategies will be considered by doing more than 12500 nonlinear analyses, and conclusions will be drawn based on the outcomes. Most of the mentioned structures have complex nonlinear behavior, including load limit and snap-back points. In this investigation, criteria like number of diverged and complete analyses, the ability of passing load limit and snap-back points, the total number of steps and analysis iterations, the analysis running time and divergence points will be examined. Numerical properties of each problem, like, maximum allowed iteration, divergence tolerance, maximum and minimum size of the load factor, load increment changes and the target point will be selected in such a way that comparison result to be highly reliable. Following this, capabilities and deficiencies of each solution technique will be surveyed in comparison with the other ones, and superior solution schemes will be introduced.

Investigation into the Definition of Environmental Literacy and the related studies (환경소양의 정의와 관련연구에 관한 분석)

  • 박진희;장남기
    • Hwankyungkyoyuk
    • /
    • v.11 no.2
    • /
    • pp.83-101
    • /
    • 1998
  • ‘Environmental Literacy’ is defined as ‘one's individual status to be accomplished or to be acquired by environmental education’ and it has the same meaning as ‘the Goals of EE’. The purposes of this study was to identify the components of environmental literacy and analyse the related studies. Much of the work in EE has followed the path outlined by the Belgrade Charter, the Tbilisi Declaration, and later in Agenda 21. Over the years, scholars such as Hungerford et al., Iozzi et al., Roth, the Wisconsin Center for Environmental Education, and the Environmental Education Literacy Consortium have examined and proposed a framework of ‘Environmental Literacy’. Recently, the influential framework developed by the NAAEE(the North American Association for Environmental Education) National Project for Excellence in EE included seven categories: affect, ecological knowledge, socio-political knowledge, knowledge of environmental issues, skills, additional determinants of environmentally responsible behavior, and environmentally responsible behaviors. According to the analysed results, 37.7% of the American studies and 32.5% of Korean ones measured aspects of the attitude. Especially, the measure of this variable in America, however, led to the most inconclusive and least positive outcomes. The studies included related to cognitive skills were very few but 100% reported positive impacts of instructions in two countries. In America, using a television documentary, a journal and the field trip were very useful and effective. But using a computer simulation/game was less effective and the supplemental instruction did't led to the positive effect. In Korea, instruction, the supplemental instruction and EE program led to positive outcomes generally. The lack of validity and reliability of the instruments was pointed out as a common problem and the development of valid and reliable instrument for nation-wide assessment is urgently needed.

  • PDF