• Title/Summary/Keyword: Mortar specimen

Search Result 213, Processing Time 0.027 seconds

Repaired concrete columns with fiber reinforced thixotropic mortar: experimental & FEA approach

  • Achillopoulou, Dimitra V.;Arvanitidou, Konstantinia C.;Karabinis, Athanasios I.
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.73-88
    • /
    • 2015
  • Following previous studies, the current paper describes the results of an experimental program concerning the repair of reinforced concrete columns by thixotropic pseudo plastic mortar, preformed to analyze and quantify the influence of initial construction damage to the behavior of the repaired element. Five columns (section scale 1:2) were designed according to the minimum requirements of reinforcement of ductility orientated codes' design with variables the percentages of initial construction damages. All were tested in axial compression with repeated cycles up to failure. For comparison reasons, another one of the same characteristics, yet healthy, was constructed and tested as a reference specimen. A numerical study (Finite Element Analysis) was conducted for further investigation of the behavior of the thixotropic mortar as repair material. The results indicate that: a) surpassing a specific amount of damage, columns even suitably repaired present lower strain capacity, b) finite element analysis present the same way of deboning of the repaired material taking into consideration the buckling of the reinforcement bars.

An Evaluation of Bacteria Growth and Glycocalyx Formation in Mortars Incorporating Glycocalyx Forming Bacteria in Simulated Sewege Environment (유사 하수 환경에서 글라이코캘릭스 형성 균주를 혼입한 모르타르의 박테리아 생장성 및 글라이코캘릭스 형성량 평가)

  • Hwang, Ji-Won;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.265-266
    • /
    • 2023
  • In this study, a mortar was prepared using Rhodobacter capsulatus which is forming glycocalyx and immersed in a simulated sewage environment. As a result of the experiment, it was observed that bacteria continued to grow in the mortar immersed in the simulated sewage environment, and it was confirmed that glycocalyx was formed by bacteria on the surface of mortar specimen.

  • PDF

Shear Behavior Characteristics of Joint according to Strain-Hardening Cement Composite Types (시멘트 복합체 종류에 따른 접합부의 전단거동특성)

  • Nam, Sang-Hyun;Jeon, Esther;Yun, Hyun-Do;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.27-28
    • /
    • 2010
  • This paper discusses behavior of Joint with strain hardening cement composites(SHCC). The main variables considered include the type of cement composites(mortar, SHCC with hybrid fiber) and shape and space of reinforcement. As the result of the tests, for the same reinforcement detail, SHCC specimen showed better overall behavior(stress, ductile, multiple cracking) than mortar specimen.

  • PDF

Determination of Interfacial Fracture Toughness by Bimaterial Eccentric Compression Test (이질재 편심압축실험에 의한 계면 파괴 인성치 산정)

  • 김형균;홍창우;양성철;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.78-81
    • /
    • 2000
  • The test specimen proposed in this study, named the bimaterial eccentric compression specimen, is a rectangular prism of two dissimilar materials with a notch at their interface. Normalized energy release rates and phase angles were calibrated with the finite element method. The normalized energy release rate increases with notch ratio but decreases with E2/E2, loading point, and phase angle, Bimaterial specimens consisting of mortar and ploymer as well as mortar and rock were prepared and tested to simulate fracture behavior ar the interface. Test results have confirmed that initial notch has significant effect on the apparent interfacial toughness.

  • PDF

Microstructure and Freeze-Thaw Resistance of Portland Cement Mortars (포틀랜드 시멘트 모르타르의 미세구조와 동결융해저항성에 대하여)

  • 이종호;장복기
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.11
    • /
    • pp.917-925
    • /
    • 1991
  • For the present experiment five Portland cement mortars are in order: mortars with two different water/ cement ratios (W/C=0.45 and 0.50, each having no chemical additive), and those with an additive such as superplasticizer, air-entraining agent or water-repelling agent. We fix the W/C ratio of mortars having additive so that their pastes can yield the same workability as that of the cement mortar of W/C=0.50 with no additive. It is shown that the freeze-thaw resistivity depends heavily on the characteristic of wide pores. Despite a good deal of wide pores, the air-entrained specimen shows a good freeze-thaw resistivity due to appropriate air-pores. And also the specimen with water-repelling agent, which proves to cause the microstructure to become hydrophobic, make good resistance to freeze-thaw cycles in spite of its high wide-porosity. Our suggestion is that the freeze-thaw durability of Portland cement mortar/concrete can be more effectively enhanced by using air-entraining agent or water-repelling agent, and simutaneously by taking proper measures against foaming and/or the increased tendency of wide-pore building due to additive.

  • PDF

Reinforcement of Concrete Structure by Impregnation of Molten Sulfur (용융황 침투에 의한 콘크리트 구조물의 물성 증진에 관한 연구)

  • 김종국;오준택;설용건;김우식
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.729-736
    • /
    • 1989
  • This study aims to reinforce concrete structure by impregnation of molten sulfur. The improved properties of sulfur impregnated concerete were confirmed by compressive strength test and water proof effect. Following variables were adopted to evaluate impregnation parameters ; 1) the effect of water content in concrete structure (0-8%) 2) impregnation time of molten sulfur(0-22hr) 3) impregnation temprature of molten sulfur(13$0^{\circ}C$, 14$0^{\circ}C$). In partial ponding experiments, the concrete specimen of sulfur impregnated by 2wt% yields 1.5 times higher value of compressive strength than that of control one(non-impregnated concerte). In complete ponding experiments, the mortar specimen of slufur impregnated by 12-14wt% yields 2-3 times higher value of compressive strength than that of control one (non-impregnated mortar). From the examination of X-ray diffractions, $\alpha$-sulfur was found in concrete pores. Homogeneous impregation of molten sulfur into concrete pores was also identified with poresize analysis and micrographs of SEM.

  • PDF

A Study on Properties of the High-Strength Concrete Admixed with II-Anhydrite and Pozzolanic Fine Power (불산부생 II 형 무수석고와 포졸란 미분체가 혼입된 고강도콘크리트의 특성에 관한 연구)

  • 조민형;길배수;전진환;김도수;남재현;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.136-145
    • /
    • 1997
  • The purpose of this study is to develope of alternative adimixture for manufacture of PHC pile(compressive strength above 800kg/$\textrm{cm}^2$). For the investigation, properties of alternative admixture admixed with II-anhydrite and pozollanic fine powders(e.q., Fly-ash, Silica-Fume), the fluidity and viscosity in the cement pastes, the fluidity and compressive strength in mortars at steam curing condition, were respectively examined. Also, properties of compressive strength of concretes with exiting admixture(specimen name SM) and alterantive admixture(specimen name AP) for PHC pile, at steam and standard curing condition, were compared each other. As a result of this experimental study, it was found that specimens admixed with II-anhydrite and pozollanic fine powders had an increase on the fluidity of cement paste and mortar, and compressive strength of mortar and concrete was as good as concrete with SM.

  • PDF

An Electrochemical Study on the Effect of Salt Affecting to Corrosion Behavior of Concrete Reinforced Steel in Natural Sea Water (천연해수에 침지된 콘크리트 내부의 철근부식거동에 미치는 염분의 영향에 관한 전기화학적 연구)

  • 김광근;류보현;점성종;김기준;문경만
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.23-29
    • /
    • 2000
  • When the concrete structures were being made with sand containing chloride ion it was knows that corrosion rate of reinforced steel embedded in concrete with chloride ion was higher than that of concrete with on chloride ion. In this study, the operation of Friedel salts affecting the corrosion behavior of reinforced steel embedded in cement mortar was investigated with electrochemical view. Corrosion potential of reinforced steel embedded in cement mortar with sand containing chloride ion was shifted noble direction than that of cement mortar with no chloride ion after immersed 5 month in natural sea water and also corrosion current density decreased with shifting corrosion potential to noble direction. However Friedel salts appeared from surface to 2.5cm of inside direction of mortar specimen, which is located at 11.5$\circ$(2$\theta$) in XRD analysis and the amount of Ca(OH)2 by SEM photograph in cement mortar with chloride ion was larger than that of cement mortar with mo chloride ion. Eventually it is suggested that Friedel salts was resulted from chloride ion and it acted as the corrosion inhibitor.

  • PDF

Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing (3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • 3D printing is not only at the fundamental study and small-scale level, but has recently been producing buildings that can be inhabited by people. Buildings require a lot of cost and labor to work on the form work, but if 3D printing is applied to the building, the construction industry is received attention from technologies using 3D printing as it can reduce the construction period and cost. 3D printing technology for buildings can be divided into structural and non-structural materials, of which 3D printing is applied to non-structural materials. Because 3D printing needs to be additive manufacturing, control such as curing speed and workability is needed. Since cement mortar has a large shrinkage due to evaporation of water, cement polymer dispersion is used to improve the hardening speed, workability, and adhesion strength. The addition of polymer dispersion to cement mortar improves the tensile strength and brittleness between the cement hydrate and the polymer film. Cement mortar using polymer materials can be additive manufacturing but it has limited height that can be additive manufacturing due to its high density. When light-weight materials are mixed with polymer cement mortar, the density of polymer cement mortar is lowered and the height of additive manufacturing, so it is essential to use light-weight materials. However, the use of EVA redispersible polymer powder and light-weight materials, additional damage such as cracks in cement mortar can occur at high temperatures such as fires. This study produced a test specimen incorporating light-weight materials and EVA redispersible polymer powder to produce exterior building materials using 3D printing, and examined flame resistance performance through water absorption rate, length change rate, and cone calorimeter test and non-flammable test. From the test result, the test specimen using silica sand and light-weight aggregate showed good flame resistance performance, and if the EVA redispersible polymer powder is applied below 5%, it shows good flame resistance performance.

Heating Transferring Charcteristics of Cement Mortar Block with Waste CNT and Conduction Activator (폐CNT와 전도촉진재를 혼입한 시멘트 모르타르 블록의 발열 전도 특성)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.176-183
    • /
    • 2022
  • High-purity waste CNTs were mixed into cement mortar to manufacture heat-generating concrete that can use low voltage power, and carbon fiber and waste cathode materials were also used improve the conductivity of the mortar. The waste CNTs were analyzed to have a high concentration of multi-walled CNTs, and substituted liquid type waste CNTs were used during mortar mixing in order to increase dispersibility. The temperature change of the mortar with CNT was evaluated when using electric power below DC 24 V in order to utilize a small self-generation facility such as small solar power module when the mortar heats up and to minimize electromagnetic waves. When liquid-type waste CNTs were applied and a voltage of DC 24 V was introduced, it rose to 60 ℃ in a 200 × 100 × 50 mm mortar block specimen. The field applicability of self heating mortar with waste CNT was sufficient and also the amount of change in heat energy in mortar with liquid type waste CNT, carbon fiber and waste cathode materials is more effective compared to it of other variables.