• Title/Summary/Keyword: Morphologies

Search Result 1,152, Processing Time 0.032 seconds

Changes in Urban Planning Policies and Urban Morphologies in Seoul, 1960s to 2000s

  • Kim, Sung Hong
    • Architectural research
    • /
    • v.15 no.3
    • /
    • pp.133-141
    • /
    • 2013
  • The purpose of this paper is to highlight the main policies of the last half century that have shaped the urban architectural fabric of Seoul today, and explore whether a modified approach might better address the current socioeconomic conditions in Korea. The paper defines and examines urban planning in Korea through an overview of the four main urban project policies implemented in Seoul from the 1960s to the present: Land Readjustment (LR), Housing Site Development (HSD), Urban Redevelopment (UR), and Housing Reconstruction (HR). While the fundamental ideology behind these policies served well during a prolonged period of high economic growth, evidence is growing that these policies are losing steam under today's conditions. A growing legacy of stalled and incomplete urban projects from the mid-2000s-the New Town Project is an example-begs the fundamental question as to whether an alternative urban planning paradigm is needed for Korea in an age of low economic growth, low birth rates and a fossil fuel energy crisis. Through the urban morphologies of the three residential areas in Seoul developed by LR projects, this paper looks at the possibility of urban regeneration through the sustainment of urban architecture in those residential areas that have not been affected by HSD, UR, and HR.

3,6-Carbazole Incorporated into Polymer Effects on Solar Cells

  • Lee, Gang-Young;Cha, Hyojung;Park, Chan Eon;Park, Taiho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.481.2-481.2
    • /
    • 2014
  • Bulk hetero junction (BHJ) polymer solar cell (PSCs) is one of the most promising fields as alternative energy source. Especially, the development of new p-type conjugated polymer is one of the main issues to get core technology. In this study, we investigated the chemical doping effects of incorporating 3,6-carbazole units into conjugated polymers based on 2,7-carbazole. We assessed the structural effects of this chemical doping by measuring the photovoltaic device performance of the copolymers with and without annealing. Note that the use of nanostructures in the bulk heterojunction layer could be a major obstacle to commercialization because nano-morphologies are frequently unstable at high temperatures. Therefore, the development of thermally stable polymer:fullerene blends with optimized PCEs is an important goal in this area of research. We studied the morphologies of the copolymers incorporating 3,6-carbazole units resulting from thermal annealing to investigate the effects of the difference between the T g values of the 2,7-carbazole unit and the 3,6-carbazole unit.

  • PDF

Analysis of Morphological Change of Polar Bacterium using Microfluidic Device with Temperature Gradient (온도 구배가 있는 미세유체 장치를 이용한 극지 미생물의 형태 변화 분석)

  • Jeong, Seong-Geun;Park, Aeri;Jeong, Heon-Ho;Hong, Soon Gyu;Lee, Chang-Soo
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.278-284
    • /
    • 2014
  • We present microfluidic method to rapidly analyze the effect of temperature on the change of morphologies of Antarctic bacteria (Pseudoalteromonas sp., Shewanella vesiculosa, Shewanella sp., and Cellulophaga sp.). The microfluidic device is able to generate stable temperature gradient from 7 to$40^{\circ}C$ and dramatically reduce the number of experiments, experimental cost and labor, and amount of sample. Based on this approach, we found that specific bacteria transforming morphology into filament or elongated body strongly depends on cultivation temperature. Interestingly, we found that the morphologies of Pseudoalteromonas sp., Shewanella vesiculosa, Shewanella sp., and Cellulophaga sp. are elongated at below $25^{\circ}C$, above $20^{\circ}C$, above $15^{\circ}C$ and above $35^{\circ}C$, respectively. We envision the microfluidic device is a useful approach to analyze biological events with a high throughput manner.

MOCVD of $Bi_2Te_3$-based thermoelectric materials and their material characteristics (MOCVD법으로 성장된 열전재료용 $Bi_2Te_3$ 박막의 특성)

  • Kim, Jeong-Hun;Jung, Yong-Chul;Suh, Sang-Hee;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-15
    • /
    • 2005
  • The growth of $Bi_2Te_3$ thin films on (001) GaAs substrates by metal organic chemical vapour deposition (MOCVD) is discussed in this paper. The results of surface morphology, electrical and thermoelectrical properties as a function of growth parameters are given. The surface morphologies of $Bi_2Te_3$ films were strong1y dependent on the deposition temperatures. Surface morphologies varied from step-flow growth mode to island coalescence structures depending on deposition temperature. In-plane carrier concentration and electrical Hall mobility were highly dependent on precursor's ratio of Te/Bi and deposition temperature. The high Seebeck coefficient (of $-160{\mu}VK^{-1}$) and good surface morphology of our result is promising for $Bi_2Te_3$ based thermoelectric thin film and two dimensional supperlattice device applications.

  • PDF

Effects of Al and Cr Alloying Elements on the Corrosion Behavior of Fe-Al-Cr Alloy System (Fe-Al-Cr계 합금의 부식거동에 미치는 Al 및 Cr 합금원소의 영향)

  • Choe Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.6
    • /
    • pp.241-247
    • /
    • 2005
  • Effects of Al and Cr alloying elements on the corrosion behavior of Fe-Al-Cr alloy system was investigated using potentiodynamic and cyclic potentiodynamic polarization tests(CPPT) in the $H_2SO_4$ and HCI solutions. The corrosion morphologies in Fe-Al-Cr alloy were analysed by utilizing scanning electron microscopy(SEM) and EDX. It was found that the corrosion potential of Fe-20Cr-20Al was highest whereas the critical anodic current density and passive current density were lower than that of the other alloys in 0.1 M $H_2SO_4$ solution. The second anodic peak at 1000 mV disappeared in the case of alloys containing high Al and low Cr contents. Pitting potential increased with increasing Cr content and repassivation potential decreased with decreasing Al content in 0.1 M HCI solution. Fe-Al-Cr alloy containing high Al and Cr contents showed remarkably improved pitting resistance against $Cl^-$ attack from pit morphologies.

Synthesis of Gold Nanoparticles by Chemical Reduction Method for Direct Ink Writing

  • Cho, Young-Sang;Son, Soo-Jung;Kim, Young-Kuk;Chung, Kook-Chae;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.390-398
    • /
    • 2010
  • Aqueous gold nanoparticle dispersion was synthesized by chemical reduction method using diethanolamine as reducing agent and polyethyleneimine as dispersion stabilizer. The synthesis conditions for the stable dispersion of the gold nanoparticle suspension were determined by changing the amount of the reducing agent and dispersant during the wet chemical synthesis procedures. The face centered cubic lattice structure of the gold nanoparticles was confirmed by using X-ray diffraction and the morphologies of the nanoparticles were observed by transmission electron microscope. The synthesized gold nanoparticle dispersion was concentrated by evaporating the dispersion medium at room temperature followed by the addition of ethyleneglycol as humectant for the increase of the elastic properties to obtain gold nanoparticle inks for direct ink writing process. The line patterns were obtained with the gold nanoparticle inks during the writing procedures and the morphologies of the fine patterns were observed by scanning electron microscope.

Development of textured ZnO:Al films for silicon thin film solar cells (실리콘 박막 태양전지용 텍스처링 ZnO:Al 박막 개발)

  • Cho, Jun-Sik;Kim, Young-Jin;Lee, Jeong-Chul;Park, Sang-Hyun;Song, Jin-Soo;Yoon, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.349-349
    • /
    • 2009
  • High quality ZnO:Al films were prepared on glass substrates by in-line RF magnetron sputtering and their surface morphologies were modified by wet-etching process in dilute acid solution to improve optical properties for application to silicon thin film solar cells as front electrode. The as-deposited films show a strong preferred orientation in [001] direction under our experimental conditions. A low resistivity below $5{\times}10^{-4}{\Omega}{\cdot}cm$ and high optical transmittance above 80% in a visible range are achieved in the films deposited at optimized conditions. After wet-etching, the surface morphologies of the films are changed dramatically depending on the deposition conditions, especially working pressure. The optical properties such as total/diffuse transmittance, haze and angular resolved distribution of light are varied significantly with the surface morphology feature, whereas the electrical properties are seldom changed. The cell performances of silicon thin film solar cells fabricated on the textured films are also evaluated in detail with comparison of commercial $SnO_2$:F films.

  • PDF

Influence of surface morphology on H2S sensing property of Cu2O thin film deposited by RF magnetron sputtering

  • Hien, Vu Xuan;You, Jae-Lok;Jo, Kwang-Min;Kim, Se-Yun;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.250-251
    • /
    • 2014
  • This study introduces a simple deposition of $Cu_2O$ thin films with surface morphologies composed of columns, submicron-rods and submicron-branches on glass substrate from metallic Cu targets by tailoring the $Ar/O_2$ ratios during the sputtering. The obtained samples were used to fabricate gas sensor. The $H_2S$ sensing properties of the sensors at working temperatures from $100^{\circ}C$ to $300^{\circ}C$ were studied, in which $Cu_2O$ submicron-branches performed the best sensing property comparing with the rest morphologies. A transformation of $Cu_2O$ to $Cu_2S$ and CuS was consider as a main factor to the sensing mechanism of the sensors.

  • PDF

Corrosion Characteristics and Surface Morphologies of TiN and ZrN Film on the Abutment Screw by Arc-ion Coating(II) (어버트먼트 나사에 아-크 이온도금된 TiN과 ZrN피막의 부식특성과 표면 형상 (II))

  • Jeong, Y.H.;Kwag, D.M.;Chung, C.H.;Kim, W.G.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.212-217
    • /
    • 2011
  • In this study, corrosion characteristics of TiN and ZrN film on the abutment screw by arc-ion plating were investigated using a potentiodynamic anodic polarization test in deaerated 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The surface morphologies of the coating layers before and after corrosion test were investigated by a field-emission scanning electron microscope (FE-SEM) and a energy dispersive x-ray spectroscopy (EDS). The surfaces of the TiN and ZrN coated abutment screws showed the smooth surfaces without mechanical defects like scratches which can be formed during the manufacturing process, compared with those of the non-coated abutment screw. The corrosion and passive current densities of TiN and ZrN coated abutment screws were lower than those of the non-coated abutment screw.

Synthesis and Characterization of Sulfonated Poly(arylene ether) Polyimide Multiblock Copolymers for Proton Exchange Membranes

  • Lee, Hae-Seung;Roy Abhishek;Badami Anand S.;McGrath James E.
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.160-166
    • /
    • 2007
  • Novel multiblock copolymers, based on segmented sulfonated hydrophilic-hydrophobic blocks, were synthesized and investigated for their application as proton exchange membranes. A series of segmented sulfonated poly(arylene ether sulfone)-b-polyimide multiblock copolymers, with various block lengths, were synthesized via the coupling reaction between the terminal amine moieties on the hydrophilic blocks and naphthalene anhydride functionalized hydrophobic blocks. Successful imidization reactions required a mixed solvent system, comprised of NMP and m-cresol, in the presence of catalysts. Proton conductivity measurements revealed that the proton conductivity improved with increasing hydrophilic and hydrophobic block lengths. The morphological structure of the multiblock copolymers was investigated using tapping mode atomic force microscopy (TM-AFM). The AFM images of the copolymers demonstrated well-defined nanophase separated morphologies, with the changes in the block length having a pronounced effect on the phase separated morphologies of the system. The self diffusion coefficient of water, as measured by $^1H$ NMR, provided a better understanding of the transport process. Thus, the block copolymers showed higher values than Nafion, and comparable proton conductivities in liquid water, as well as under partially hydrated conditions at $80^{\circ}C$. The new materials are strong candidates for use in PEM systems.