• Title/Summary/Keyword: Morphological Segmentation

Search Result 159, Processing Time 0.024 seconds

Depth edge detection by image-based smoothing and morphological operations

  • Abid Hasan, Syed Mohammad;Ko, Kwanghee
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.191-197
    • /
    • 2016
  • Since 3D measurement technologies have been widely used in manufacturing industries edge detection in a depth image plays an important role in computer vision applications. In this paper, we have proposed an edge detection process in a depth image based on the image based smoothing and morphological operations. In this method we have used the principle of Median filtering, which has a renowned feature for edge preservation properties. The edge detection was done based on Canny Edge detection principle and was improvised with morphological operations, which are represented as combinations of erosion and dilation. Later, we compared our results with some existing methods and exhibited that this method produced better results. However, this method works in multiframe applications with effective framerates. Thus this technique will aid to detect edges robustly from depth images and contribute to promote applications in depth images such as object detection, object segmentation, etc.

A Hybrid Approach for the Morpho-Lexical Disambiguation of Arabic

  • Bousmaha, Kheira Zineb;Rahmouni, Mustapha Kamel;Kouninef, Belkacem;Hadrich, Lamia Belguith
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.358-380
    • /
    • 2016
  • In order to considerably reduce the ambiguity rate, we propose in this article a disambiguation approach that is based on the selection of the right diacritics at different analysis levels. This hybrid approach combines a linguistic approach with a multi-criteria decision one and could be considered as an alternative choice to solve the morpho-lexical ambiguity problem regardless of the diacritics rate of the processed text. As to its evaluation, we tried the disambiguation on the online Alkhalil morphological analyzer (the proposed approach can be used on any morphological analyzer of the Arabic language) and obtained encouraging results with an F-measure of more than 80%.

A Novel Method for Automated Honeycomb Segmentation in HRCT Using Pathology-specific Morphological Analysis (병리특이적 형태분석 기법을 이용한 HRCT 영상에서의 새로운 봉와양폐 자동 분할 방법)

  • Kim, Young Jae;Kim, Tae Yun;Lee, Seung Hyun;Kim, Kwang Gi;Kim, Jong Hyo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • Honeycombs are dense structures that small cysts, which generally have about 2~10 mm in diameter, are surrounded by the wall of fibrosis. When honeycomb is found in the patients, the incidence of acute exacerbation is generally very high. Thus, the observation and quantitative measurement of honeycomb are considered as a significant marker for clinical diagnosis. In this point of view, we propose an automatic segmentation method using morphological image processing and assessment of the degree of clustering techniques. Firstly, image noises were removed by the Gaussian filtering and then a morphological dilation method was applied to segment lung regions. Secondly, honeycomb cyst candidates were detected through the 8-neighborhood pixel exploration, and then non-cyst regions were removed using the region growing method and wall pattern testing. Lastly, final honeycomb regions were segmented through the extraction of dense regions which are consisted of two or more cysts using cluster analysis. The proposed method applied to 80 High resolution computed tomography (HRCT) images and achieved a sensitivity of 89.4% and PPV (Positive Predictive Value) of 72.2%.

Fish Injured Rate Measurement Using Color Image Segmentation Method Based on K-Means Clustering Algorithm and Otsu's Threshold Algorithm

  • Sheng, Dong-Bo;Kim, Sang-Bong;Nguyen, Trong-Hai;Kim, Dae-Hwan;Gao, Tian-Shui;Kim, Hak-Kyeong
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.32-37
    • /
    • 2016
  • This paper proposes two measurement methods for injured rate of fish surface using color image segmentation method based on K-means clustering algorithm and Otsu's threshold algorithm. To do this task, the following steps are done. Firstly, an RGB color image of the fish is obtained by the CCD color camera and then converted from RGB to HSI. Secondly, the S channel is extracted from HSI color space. Thirdly, by applying the K-means clustering algorithm to the HSI color space and applying the Otsu's threshold algorithm to the S channel of HSI color space, the binary images are obtained. Fourthly, morphological processes such as dilation and erosion, etc. are applied to the binary image. Fifthly, to count the number of pixels, the connected-component labeling is adopted and the defined injured rate is gotten by calculating the pixels on the labeled images. Finally, to compare the performances of the proposed two measurement methods based on the K-means clustering algorithm and the Otsu's threshold algorithm, the edge detection of the final binary image after morphological processing is done and matched with the gray image of the original RGB image obtained by CCD camera. The results show that the detected edge of injured part by the K-means clustering algorithm is more close to real injured edge than that by the Otsu' threshold algorithm.

Confocal Microscopy Image Segmentation and Extracting Structural Information for Morphological Change Analysis of Dendritic Spine (수상돌기 소극체의 형태변화 분석을 위한 공초점현미경 영상 분할 및 구조추출)

  • Son, Jeany;Kim, Min-Jeong;Kim, Myoung-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.167-174
    • /
    • 2008
  • The introduction of confocal microscopy makes it possible to observe the structural change of live neuronal cell. Neuro-degenerative disease, such as Alzheimer;s and Parkinson’s diseases are especially related to the morphological change of dendrite spine. That’s the reason for the study of segmentation and extraction from confocal microscope image. The difficulty comes from uneven intensity distribution and blurred boundary. Therefore, the image processing technique which can overcome these problems and extract the structural information should be suggested. In this paper, we propose robust structural information extracting technique with confocal microscopy images of dendrite in brain neurons. First, we apply the nonlinear diffusion filtering that enhance the boundary recognition. Second, we segment region of interest using iterative threshold selection. Third, we perform skeletonization based on Fast Marching Method that extracts centerline and boundary for analysing segmented structure. The result of the proposed method has been less sensitive to noise and has not been affected by rough boundary condition. Using this method shows more accurate and objective results.

  • PDF

A Stroke-Based Text Extraction Algorithm for Digital Videos (디지털 비디오를 위한 획기반 자막 추출 알고리즘)

  • Jeong, Jong-Myeon;Cha, Ji-Hun;Kim, Kyu-Heon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.297-303
    • /
    • 2007
  • In this paper, the stroke-based text extraction algorithm for digital video is proposed. The proposed algorithm consists of four stages such as text detection, text localization, text segmentation and geometric verification. The text detection stage ascertains that a given frame in a video sequence contains text. This procedure is accomplished by morphological operations for the pixels with higher possibility of being stroke-based text, which is called as seed points. For the text localization stage, morphological operations for the edges including seed points ate adopted followed by horizontal and vortical projections. Text segmentation stage is to classify projected areas into text and background regions according to their intensity distribution. Finally, in the geometric verification stage, the segmented area are verified by using prior knowledge of video text characteristics.

Integrated Indexing Method using Compound Noun Segmentation and Noun Phrase Synthesis (복합명사 분할과 명사구 합성을 이용한 통합 색인 기법)

  • Won, Hyung-Suk;Park, Mi-Hwa;Lee, Geun-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.84-95
    • /
    • 2000
  • In this paper, we propose an integrated indexing method with compound noun segmentation and noun phrase synthesis. Statistical information is used in the compound noun segmentation and natural language processing techniques are carefully utilized in the noun phrase synthesis. Firstly, we choose index terms from simple words through morphological analysis and part-of-speech tagging results. Secondly, noun phrases are automatically synthesized from the syntactic analysis results. If syntactic analysis fails, only morphological analysis and tagging results are applied. Thirdly, we select compound nouns from the tagging results and then segment and re-synthesize them using statistical information. In this way, segmented and synthesized terms are used together as index terms to supplement the single terms. We demonstrate the effectiveness of the proposed integrated indexing method for Korean compound noun processing using KTSET2.0 and KRIST SET which are a standard test collection for Korean information retrieval.

  • PDF

Automatic Liver Segmentation on Abdominal Contrast-enhanced CT Images for the Pre-surgery Planning of Living Donor Liver Transplantation

  • Jang, Yujin;Hong, Helen;Chung, Jin Wook
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.37-40
    • /
    • 2014
  • Purpose For living donor liver transplantation, liver segmentation is difficult due to the variability of its shape across patients and similarity of the density of neighbor organs such as heart, stomach, kidney, and spleen. In this paper, we propose an automatic segmentation of the liver using multi-planar anatomy and deformable surface model in portal phase of abdominal contrast-enhanced CT images. Method Our method is composed of four main steps. First, the optimal liver volume is extracted by positional information of pelvis and rib and by separating lungs and heart from CT images. Second, anisotropic diffusing filtering and adaptive thresholding are used to segment the initial liver volume. Third, morphological opening and connected component labeling are applied to multiple planes for removing neighbor organs. Finally, deformable surface model and probability summation map are performed to refine a posterior liver surface and missing left robe in previous step. Results All experimental datasets were acquired on ten living donors using a SIEMENS CT system. Each image had a matrix size of $512{\times}512$ pixels with in-plane resolutions ranging from 0.54 to 0.70 mm. The slice spacing was 2.0 mm and the number of images per scan ranged from 136 to 229. For accuracy evaluation, the average symmetric surface distance (ASD) and the volume overlap error (VE) between automatic segmentation and manual segmentation by two radiologists are calculated. The ASD was $0.26{\pm}0.12mm$ for manual1 versus automatic and $0.24{\pm}0.09mm$ for manual2 versus automatic while that of inter-radiologists was $0.23{\pm}0.05mm$. The VE was $0.86{\pm}0.45%$ for manual1 versus automatic and $0.73{\pm}0.33%$ for manaual2 versus automatic while that of inter-radiologist was $0.76{\pm}0.21%$. Conclusion Our method can be used for the liver volumetry for the pre-surgery planning of living donor liver transplantation.

A High-Speed Korean Morphological Analysis Method based on Pre-Analyzed Partial Words (부분 어절의 기분석에 기반한 고속 한국어 형태소 분석 방법)

  • Yang, Seung-Hyun;Kim, Young-Sum
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.3
    • /
    • pp.290-301
    • /
    • 2000
  • Most morphological analysis methods require repetitive procedures of input character code conversion, segmentation and lemmatization of constituent morphemes, filtering of candidate results through looking up lexicons, which causes run-time inefficiency. To alleviate such problem of run-time inefficiency, many systems have introduced the notion of 'pre-analysis' of words. However, this method based on pre-analysis dictionary of surface also has a critical drawback in its practical application because the size of the dictionaries increases indefinite to cover all words. This paper hybridizes both extreme approaches methodologically to overcome the problems of the two, and presents a method of morphological analysis based on pre-analysis of partial words. Under such hybridized scheme, most computational overheads, such as segmentation and lemmatization of morphemes, are shifted to building-up processes of the pre-analysis dictionaries and the run-time dictionary look-ups are greatly reduced, so as to enhance the run-time performance of the system. Moreover, additional computing overheads such as input character code conversion can also be avoided because this method relies upon no graphemic processing.

  • PDF

Design of Image Retrieval System using Color and Morphological Informations based on Binary Sets (이진집합기반에서 칼라와 형태정보를 이용한 영상 검색시스템 설계)

  • 김성동;최기호
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.6
    • /
    • pp.575-584
    • /
    • 2000
  • This paper presents a new image retrieval system with color and morphological informations based on binary sets. Each of them can be obtained from color binary sets and regional segmentation separately. For retrieval processes, the candidate images are decided by comparing color and their image binary sets of the database with query images. Particularly, it is possible that the retrieval of similar-measurements has a weight of color spatial distribution and its objective morphological features. We proposed a new idea for performing simply the complicated similar-measurement of candidated images to improve queried processes. The retrieval method using spatial and morphological features is shown with the effectiveness on the result of implementation on database with 3,000 images.

  • PDF