• Title/Summary/Keyword: Mooring tensions

Search Result 35, Processing Time 0.02 seconds

Dynamic Analysis of Berthed Mooring by Numerical Method (수치해석 기법을 이용한 안벽계류의 동력학적 고찰)

  • 조철희;김두홍;김병환;나인삼
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.69-75
    • /
    • 2001
  • It is very important to secure the marine vessels during entire loading and off-loading operations. The environment influences on loading conditions. the western coastal area of Korea is characterized as a strong current due to a high tidal range. The tension of mooring lines varies as per the current and wave changing its magnitude during the day. A proper mooring arrangement and design of mooring line should be determined as per environment conditions. In this study, a 50,000 DWT container ship being moored is investigated numerically. The dynamic tension of mooring lines is estimated by MORA (Mooring Response Analysis) software. Environmental conditions of selected offshore terminal site are plugged as input data. The mooring line tensions are obtained for various wave frequencies per wave directions. The results demonstrate the change of tensions of lines and the allowable range of safe conditions in berthed mooring.

  • PDF

An experimental study on compliant buoy mooring system in shallow water (천해역 유연부이 계류시스템에 관한 실험연구)

  • Kim, Jin-Ha;Hong, Sa-Young;Hong, Seok-Won;Hong, Sup
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.155-160
    • /
    • 2002
  • In this paper, a compliant buoy mooring system of a floating cylindrical structure in shallow water depth is studied experimentally. The compliant buoy mooring system consists of four buoys, vertical mooring legs and horizontal mooring lines. A series of model test were carried out at KRISO ocean engineering basin for various mooring parameters; line length, pretension of mooring leg and mooring layouts and environmental conditions; regular and irregular waves combined with current and wind. The mooring line tensions and 6-DOF motions of the floating structure were measured using water-proof load cells and 3 CCD camera system. The results of a series of model tests were discussed on nonlinear motion behaviors of the floating structure and characterisitics of cumulative distributions of mooring line peak tensions.

  • PDF

Fully coupled multi-hull/mooring/riser/hawser time domain simulation of TLP-TAD system with MR damper

  • Muhammad Zaid Zainuddin;Moo-Hyun Kim;Chungkuk Jin;Shankar Bhat
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.401-421
    • /
    • 2023
  • Reducing hawser line tensions and dynamic responses to a certain level is of paramount importance as the hawser lines provide important structural linkage between 2 body TLP-TAD system. The objective of this paper is to demonstrate how MR Damper can be utilized to achieve this. Hydrodynamic coefficients and wave forces for two bodies including second-order effects are obtained by 3D diffraction/radiation panel program by potential theory. Then, multi-hull-riser-mooring-hawser fully-coupled time-domain dynamic simulation program is applied to solve the complex two-body system's dynamics with the Magneto-Rheological (MR) Damper modeled on one end of hawser. Since the damping level of MR Damper can be changed by inputting different electric currents, various simulations are conducted for various electric currents. The results show the reductions in maximum hawser tensions with MR Damper even for passive control cases. The results also show that the hawser tensions and MR Damper strokes are affected not only by input electric currents but also by initial mooring design. Further optimization of hawser design with MR Damper can be done by active MR-Damper control with changing electric currents, which is the subject of the next study.

Numerical simulation of the coupled dynamic response of a submerged floating tunnel with mooring lines in regular waves

  • Cifuentes, Cristian;Kim, Seungjun;Kim, M.H.;Park, W.S.
    • Ocean Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.109-123
    • /
    • 2015
  • In the present study, the coupled dynamic response of a Submerged Floating Tunnel (SFT) and mooring lines under regular waves is solved by using two independent numerical simulation methods, OrcaFlex and CHARM3D, in time domain. Variations of Buoyancy to Weight Ratio (BWR), wave steepness/period, and water/submergence depth are considered as design and environmental parameters in the study. Two different mooring-line configurations, vertical and inclined, are studied to find an optimum design in terms of limiting tunnel motions and minimizing mooring-line tension. The numerical results are successfully validated by direct comparison against published experimental data. The results show that tunnel motions and tether tensions grow with wave height and period and decrease with submergence depth. The inclined mooring system is more effective in restricting tunnel motions compared to the vertical mooring system. Overall, the present study demonstrates the feasibility of this type of structure as an alternative to traditional bridges or under-seabed tunnels.

A Positioning Mooring System Design for Barge Ship Based on PID Control Approach

  • Kim, Youngbok
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.94-99
    • /
    • 2013
  • This paper presents some experimental results about Position Mooring (PM) system applied to the barge ship. In PM operation, the station keeping in surge, sway of vessel is provided by the mooring system. In this paper, a system, consisting of a barge vessel and mooring lines, is mathematically modeled. The position and orientation of vessel is controlled by changing the tensions in the mooring lines. The PID control strategy is applied to evaluate the efficiency of proposed system. Experimental result which corresponds to the applied control strategy is presented and discussed.

Dynamic response analysis of submerged floating tunnels by wave and seismic excitations

  • Lee, Jooyoung;Jin, Chungkuk;Kim, Moohyun
    • Ocean Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-19
    • /
    • 2017
  • This paper presents the numerical simulation results for the dynamic responses of two types of submerged floating tunnels (SFT) under wave and/or seismic excitations. Time domain simulations are conducted by the commercial program OrcaFlex (OF) and in-house CHARM3D program (CP). The dynamic performances of a short/rigid/free-end SFT section with vertical and inclined mooring lines are evaluated. The SFT numerical models were validated against Oh et al.'s (2013) model test results under regular wave conditions. Then the numerical models were further applied to the cases of irregular waves or seismic motions. The main results presented are SFT surge/heave motions and mooring tensions. The general trends and magnitudes obtained by the two different software packages reasonably agree to each other along with experimental results. When seabed seismic motions are applied to the SFT system, the dynamic responses of SFTs are small but dynamic mooring tension can significantly be amplified. In particular, horizontal earthquakes greatly increase the dynamic tension of the inclined mooring system, while vertical earthquakes cause similar effect on vertical mooring system.

Motion of Cylindrical Buoy and Its Mooring Line Tension by Installation Depth under the Action of Waves (부설 수심의 변화에 따른 파랑 중 원통형 부체의 운동 및 계류삭 장력 해석)

  • Kim, Tae-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.360-366
    • /
    • 2004
  • This paper presents a method analyzing the motion of cylindrical buoy moored at 2 points and tensions action on each mooring line under the action of periodic waves. It was found that submersible buoy was more effective than floating one in the severe conditions considering its dynamic motions, wave forces, and mooring line tensions. The wave induced its dynamic responses and mooring line tensions peak when the ratio d/${\lambda}$ of the buoy length d to the waves length ${\lambda}$ was 0.66 due to its natural frequency. The results of this study were in agreement with the existing measurement ones, however, further verifications are needed considering resonance of cylindrical buoy and its displacements to wave height by a series of model tests.

Systematic comparisons among OpenFAST, Charm3D-FAST simulations and DeepCWind model test for 5 MW OC4 semisubmersible offshore wind turbine

  • Jieyan Chen;Chungkuk Jin;Moo-Hyun Kim
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.173-193
    • /
    • 2023
  • Reliable prediction of the motion of FOWT (floating offshore wind turbine) and associated mooring line tension is important in both design and operation/monitoring processes. In the present study, a 5MW OC4 semisubmersible wind turbine is numerically modeled, simulated, and analyzed by the open-source numerical tool, OpenFAST and in-house numerical tool, Charm3D-FAST. Another commercial-level program FASTv8-OrcaFlex is also introduced for comparison for selected cases. The three simulation programs solve the same turbine-floater-mooring coupled dynamics in time domain while there exist minor differences in the details of the program. Both the motions and mooring-line tensions are calculated and compared with the DeepCWind 1/50 scale model-testing results. The system identification between the numerical and physical models is checked through the static-offset test and free-decay test. Then the system motions and mooring tensions are systematically compared among the simulated results and measured values. Reasonably good agreements between the simulation and measurement are demonstrated for (i) white-noise random waves, (ii) typical random waves, and (iii) typical random waves with steady wind. Based on the comparison between numerical results and experimental data, the relative importance and role of the differences in the numerical methodologies of those three programs can be observed and interpreted. These comparative-study results may provide a certain confidence level and some insight of potential variability in motion and tension predictions for future FOWT designs and applications.

An Experimental Analysis on the Motion Response of a Moored Semi-Submersible Platform in Regular Waves (계류된 반잠수식 시추선의 운동특성에 관한 실험적 고찰)

  • 홍사영;이판묵;홍도천
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.59-70
    • /
    • 1988
  • This paper presents the results of motion tests of a moored semi-submersible platform in regular waves. To investigate the effects of mooring system on the motion characteristics, the tests were performed under the various mooring conditions in regular head and beam waves. Two types of mooring system were employed: one is composed of soft springs and the other is of chains. In the case of chains the pretensions were varied to investigate the dynamic effects of mooring forces as well as the motion responses of the semi-submersible. The motion responses and mooring tensions were measured and analyzed by the double amplitude method. The measured motion responses were also compared with the results of calculation from three-dimensional potential theory. Finally, the dynamic behaviors of mooring chains were studied.

  • PDF

New evaluation of ship mooring with friction effects on mooring rope and cost-benefit estimation to improve port safety

  • Lee, Sang-Won;Sasa, Kenji;Aoki, Shin-ich;Yamamoto, Kazusei;Chen, Chen
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.306-320
    • /
    • 2021
  • To ensure safe port operations around the world, it is important to solve mooring problems. In particular, the many ports that face open seas have difficulties with long-period waves. As a countermeasure, the installation of a breakwater is proposed for mooring safety. However, this often cannot be put into practice because of financial issues. Instead, port terminals control berthing schedules with weather forecasting. However, mooring problems remain unsolved, because of inaccurate wave forecasting. To quantify the current situation, numerical simulations are presented with ship motions, fender deflections, and rope tensions. In addition, novel simulations for mooring ropes are proposed considering tension, friction, bending fatigue, and temperature. With this novel simulation, the optimal mooring method in terms of safety and economic efficiency was confirmed. In terms of safety, the optimal mooring method is verified to minimize dangerous mooring situations. Moreover, the optimal mooring method shows economic benefits and efficiency. It can help to reinforce the safety of port terminals and improve the efficiency of port operations.