• 제목/요약/키워드: Mooring line

검색결과 141건 처리시간 0.023초

부설 수심의 변화에 따른 파랑 중 원통형 부체의 운동 및 계류삭 장력 해석 (Motion of Cylindrical Buoy and Its Mooring Line Tension by Installation Depth under the Action of Waves)

  • 김태호
    • 수산해양기술연구
    • /
    • 제40권4호
    • /
    • pp.360-366
    • /
    • 2004
  • 침하식 가두리 시설의 안정성 평가를 위한 기초 단계로서 일방향 규칙파 중 2점 계류된 원통형 부체를 대상으로 부설 수심의 변화에 따른 부체의 동적 거동 및 계류삭에 작용하는 장력 산정에 관한 수치 계산을 수행하였다. 수치 계산 결과, 수면 상에 설치된 부체를 수면 아래의 약 1/2되는 수층까지 침하 시킨 경우 그것은 동적 거동과 파력은 초기 상태에 비해 각각 최대 50%와 77%까지 감소되어 시설물을 수중으로 침하 시키면 그것의 안정성 유지에 매우 효과적임을 확인할 수 있었다. 또한 부체의 전 후단 변위 및 계류삭에 작용하는 장력의 최대치는 부체의 고유 주기의 영향으로 인해 그것은 길이 d 에 대한 파장 ${\lambda}$의 비 즉, d/${\lambda}$가 약 0.66에서 나타났으며, 이와 같은 현상은 기존 수리 모형실험 결과와 비교적 잘 일치하였다. 그러나 본 수치 계산의 신뢰성 확인을 위해서는 수리 모형실험을 통해 부체의 고유 주기와 작용 파고에 대한 전 후단 변위 등에 대한 충분한 검토가 요구된다.

Experimental Study on Application of an Optical Sensor to Measure Mooring-Line Tension in Waves

  • Nguyen, Thi Thanh Diep;Park, Ji Won;Nguyen, Van Minh;Yoon, Hyeon Kyu;Jung, Joseph Chul;Lee, Michael Myung Sub
    • 한국해양공학회지
    • /
    • 제36권3호
    • /
    • pp.153-160
    • /
    • 2022
  • Moored floating platforms have great potential in ocean engineering applications because a mooring system is necessary to keep the platform in station, which is directly related to the operational efficiency and safety of the platform. This paper briefly introduces the technical and operational details of an optical sensor for measuring the tension of mooring lines of a moored platform in waves. In order to check the performance of optical sensors, an experiment with a moored floating platform in waves is carried out in the wave tank at Changwon National University. The experiment is performed in regular waves and irregular waves with a semi-submersible and triangle platform. The performance of the optical sensor is confirmed by comparing the results of the tension of the mooring lines by the optical sensor and tension gauges. The maximum tension of the mooring lines is estimated to investigate the mooring dynamics due to the effect of the wave direction and wavelength in the regular waves. The significant value of the tension of mooring lines in various wave directions is estimated in the case of irregular waves. The results show that the optical sensor is effective in measuring the tension of the mooring lines.

닻줄변형에 관한 원심모형해석 (Centrifuge Model Analysis on Mooring Line Deformation)

  • 한희수;조재호;장동훈;정연구
    • 한국지반공학회논문집
    • /
    • 제22권9호
    • /
    • pp.15-22
    • /
    • 2006
  • 선박을 정착시키기 위하여 해저지반에 관입된 드래그 / 영구앵커와 앵커에 연결된 닻줄의 지지력 및 변형을 해석하여, 기존의 앵커와 닻줄의 분석 및 개발을 위하여 만들어진 해석프로그램을 calibration 하기 위하여 원심모형시험기를 사용한 시험을 하였다. 시험에 사용된 닻줄은 ball chain 및 wire cable로써, 일정한 단면을 가지고 있으며, 해성점토 지반 안에 다양한 깊이로 정착시킨 후 원심모형시험을 실시하였다. 현장응력조건을 모사하기 위하여, 미리 응력을 가한 시험용 닻줄에 단계별 가속을 하였다. 이 논문은 닻줄의 해석을 위한 중요한 두 가지 변수인 닻줄과 지반의 부착력 및 접착면적환산계수를 결정하기 위한 과정을 설명하고자 하였으며, 이로 인한 닻줄의 변형 및 지지력 변화를 규명하였다.

LNG선의 계류 안전성의 평가에 관한 연구 (A Study on the Evaluation of Mooring Safety of LNG Ships)

  • 김세원
    • 한국항해학회지
    • /
    • 제24권5호
    • /
    • pp.373-383
    • /
    • 2000
  • The ship’s safe mooring stability is a principles for the safe cargo handling works at the mooring berth. Today numerous standards, guidelines and recommendations concerning mooring practices, fittings and equipments exist throughout the worldwide maritime industries. In recently, the mooring facilities were constructed as dolphin types at the open sea area apart far from shoreside instead of enclosed coastline area in accordance with increasing ship’s size and for preventing environmental pollution. Therefore the exciting wave condition must be considered as a basic environmental criteria with the wind force and current force for all of the mooring ships at the sea berth facilities. In this study, this added wave force as one of the environmental external forces by using the theoretical formula was applied to the LNG ship in Pyeongtaeg harbor needed the special mooring stability of the sea berth. Through this research, it can be confirmed that wave force is the very important factor in the mooring force and the strength of wave force works much more in the full laden condition than in the lightship condition. And also the wave force changes to non-linear states according to the wave frequency and wave length. In addition, the maximum limit criteria of environmental force of prohibiting the entering ship on the berth and loading works controlled by the port authority concerned of Pyeongtaeg port fully satisfies the condition of the mooring limit force recommended by OCIMF that the safe permitted force of the mooring line have to be within 55 % of MBL.

  • PDF

섬유로프 계류시스템의 크리프 효과가 부유체의 운동응답 및 계류선의 장력 변화에 미치는 영향에 관한 연구 (A Study on Creep Effect of Synthetic Fiber Rope Mooring System on Motion Response of Vessel and Tension of Mooring Line)

  • 박성민;이승재;강수원
    • 대한조선학회논문집
    • /
    • 제54권2호
    • /
    • pp.151-160
    • /
    • 2017
  • Growing demand and rapid development of the synthetic fiber rope in mooring system have taken place since it has been used in deep water platform lately. Unlike a chain mooring, synthetic fiber rope composed of lightweight materials such as Polyester(polyethylene terephthalate), HMPE(high modulus polyethylene) and Aramid(aromatic polyamide). Non-linear stiffness and another failure mode are distinct characteristics of synthetic fiber rope when compared to mooring chain. When these ropes are exposed to environmental load for a long time, the length of rope will be increased permanently. This is called 'the creep phenomenon'. Due to the phenomenon, The initial characteristics of mooring systems would be changed because the length and stiffness of the rope have been changed as time goes on. The changed characteristics of fiber rope cause different mooring tension and vessel offset compared to the initial design condition. Commercial mooring analysis software that widely used in industries is unable to take into account this phenomenon automatically. Even though the American Petroleum Institute (API) or other classification rules present some standard or criteria with respect to length and stiffness of a mooring line, simulation guide considers the mechanical properties that is not mentioned in such rules. In this paper, the effect of creep phenomenon in the fiber rope mooring system under specific environment condition is investigated. Desiged mooring system for a Mobile Offshore Drilling Unit(MODU) with HMPE rope which has the highest creep is analyzed in a time domain in order to investigate the effects creep phenomenon to vessel offset and mooring tension. We have developed a new procedure to an analysis of mooring system reflecting the creep phenomenon and it is validated through a time domain simulation using non-linear mooring analysis software, OrcaFlex. The result shows that the creep phenomenon should be considered in analysis procedure because it affects the length and stiffness of synthetic fiber rope in case of high water temperature and permanent mooring system.

Numerical and experimental study on dynamic response of moored spar-type scale platform for floating offshore wind turbine

  • Choi, E.Y.;Cho, J.R.;Cho, Y.U.;Jeong, W.B.;Lee, S.B.;Hong, S.P.;Chun, H.H.
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.909-922
    • /
    • 2015
  • The dynamic response and the mooring line tension of a 1/75 scale model of spar-type platform for 2.5 MW floating offshore wind turbine subject to one-dimensional regular harmonic wave are investigated numerically and verified by experiment. The upper part of wind turbine which is composed of three rotor blades, hub and nacelle is modeled as a lumped mass the scale model and three mooring lines are pre-tensioned by means of linear springs. The coupled fluid-rigid body interaction is numerically simulated by a coupled FEM-cable dynamics code, while the experiment is performed in a wave tank with the specially-designed vision and data acquisition system. The time responses of surge, heave and pitch motions of the scale platform and the mooring line tensions are obtained numerically and the frequency domain-converted RAOs are compared with the experiment.

Hull/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.26-39
    • /
    • 2004
  • A vessel/mooring/riser coupled dynamic analysis program in time domain is developed for the global motion simulation of a turret-moored, tanker based FPSO designed for 6000-ft water depth. The vessel global motions and mooring tension are simulated for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. The wind and current forces and moments are estimated from the OCIMF empirical data base for the given loading condition. The numerical results are compared with the OTRC(Offshore Technology Research Center: Model Basin for Offshore Platforms in Texas A&M University) 1:60 model-testing results with truncated mooring system. The system's stiffness and line tension as well as natural periods and damping obtained from the OTRC measurement are checked through numerically simulated static-offset and free-decay tests. The global vessel motion simulations in the hurricane condition were conducted by varying lateral and longitudinal hull drag coefficients, different mooring and riser set up, and wind-exposed areas to better understand the sensitivity of the FPSO responses against empirical parameters. It is particularly stressed that the dynamic mooring tension can be greatly underestimated when truncated mooring system is used.

A Study on Improvement of Criteria for Mooring Safety Assessment in Single Point Mooring

  • Lee, Sang-Won;Kim, Young-Du
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.287-297
    • /
    • 2019
  • The recent increase in crude oil trading has led to an increase in the workings of SPM for crude oil carriers. VLCCs generally encounter difficulty entering port due to limitations in terms of sea depth and maneuverability. The SPM is a system that allows mooring to the buoy located in the outer sea for such vessels. However, the buoy is more affected by relatively external forces because of their of shore location. Therefore, the safety assessment of SPM is particularly important as it can lead to large oil pollution disasters in the event of SPM accidents. Despite this, in the implementation of the Marine Traffic Safety Audit Scheme in Korea, there exists no guidance for SPM. In this study, a SPM mooring safety assessment is performed using OPTIMOOR, a numerical analysis program, so as to understand the mooring characteristics of SPM. As a result, it is confirmed that the tension of mooring lines and hull movement in the SPM are greatly affected by the encounter angles with external forces. In addition, it is found that the maximum tension of the mooring line is elevated as the water depth becomes shallower through sensitivity analysis. According to SPM characteristics, which has a large influence on the encounter angle, this study has proposed an amendment to setting criteria in the implementation of the Maritime Traffic Safety Audit Scheme which could improve the reliability and accuracy of mooring safety assessments.

공기 동역학 하중이 부유식 해상 풍력 발전기의 계류선 응답에 미치는 영향에 관한 연구 (A Study on Effect of Aerodynamic Loads on Mooring Line Responses of a Floating Offshore Wind Turbine)

  • 김형준;한승오;정준모
    • 대한조선학회논문집
    • /
    • 제52권1호
    • /
    • pp.43-51
    • /
    • 2015
  • This paper presents effect of aerodynamic loads on mooring line responses of a floating offshore wind turbine. A Matlab code based on blade element momentum (BEM) theory is developed to consider aerodynamic loads acting on NREL 5MW wind turbine. The aerodynamic loads are coupled with time-domain hydrodynamic analyses using one-way interaction scheme of the wave and wind loads. A semi-submersible floating platform which is from Offshore Code Comparison Collaborative Continuation(OC4) DeepCWind platform is used with catenary mooring lines simply composed of studless chain links. Average values of mooring peak tensions obtained from aerodynamic load consideration are significantly increased compared to those from simple wind drag force consideration. Consideration of aerodynamic loads also yield larger tension ranges which can be important factor to reduce fatigue life of the mooring lines.

A Study on Moored Floating Body using Non-linear FEM Analysis

  • Ku, Namkug
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권1호
    • /
    • pp.25-34
    • /
    • 2018
  • In this study, the behavior of the coupled mooring system and floating body is analyzed. The related works are introduced for the mooring analysis of the floating body. Equations motion are introduced for calculating mooring force connected with the floating body. For formulating the equations of motion, the concept of the constrained force is applied for compact expression of it. The input and output data of the module for calculating mooring force is defined. The static analysis and quasi-static analysis are performed. For the analysis, equilibrium equation for elastic catenary mooring line is used by employing finite element method, and the C# solver is developed in this research. The analysis results are validated by comparing with other research results.